Suppr超能文献

在不等概率抽样情况下线性化方法中使用总变差的一个关键问题。

A critical issue of using the variance of the total in the linearization method - In the context of unequal probability sampling.

机构信息

Department of Biostatistics, University at Buffalo, The State University of New York, Buffalo, New York.

出版信息

Stat Med. 2019 Apr 15;38(8):1475-1483. doi: 10.1002/sim.8053. Epub 2018 Nov 28.

Abstract

Publicly available national survey data are useful for the evidence-based research to advance our understanding of important questions in the health and biomedical sciences. Appropriate variance estimation is a crucial step to evaluate the strength of evidence in the data analysis. In survey data analysis, the conventional linearization method for estimating the variance of a statistic of interest uses the variance estimator of the total based on linearized variables. We warn that this common practice may result in undesirable consequences such as susceptibility to data shift and severely inflated variance estimates, when unequal weights are incorporated into variance estimation. We propose to use the variance estimator of the mean (mean-approach) instead of the variance estimator of the total (total-approach). We show a superiority of the mean-approach through analytical investigations. A real data example (the National Comorbidity Survey Replication) and simulation-based studies strongly support our conclusion.

摘要

公开可用的全国性调查数据对于基于证据的研究很有用,可以帮助我们深入了解健康和生物医学科学中的重要问题。适当的方差估计是数据分析中评估证据强度的关键步骤。在调查数据分析中,常用的线性化方法用于估计感兴趣统计量的方差,该方法基于线性化变量使用总体方差估计量。我们警告说,当不等权重被纳入方差估计时,这种常见做法可能会导致不良后果,例如易受数据偏移和严重膨胀的方差估计的影响。我们建议使用均值方差估计量(均值法)代替总体方差估计量(总体法)。我们通过分析研究证明了均值法的优越性。一个真实数据示例(国家共病调查再调查)和基于模拟的研究强烈支持我们的结论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验