Department of Biostatistics, University at Buffalo, State University of New York, Buffalo, New York, USA.
Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA.
Health Serv Res. 2022 Feb;57(1):200-211. doi: 10.1111/1475-6773.13895. Epub 2021 Oct 22.
To examine a robust relative risk (RR) estimation for survey data analysis with ideal inferential properties under various model assumptions.
We employed secondary data from the Household Component of the 2000-2016 US Medical Expenditure Panel Survey (MEPS).
We investigate a broad range of data-balancing techniques by implementing influence function (IF) methods, which allows us to easily estimate the variability for the RR estimates in the complex survey setting. We conduct a simulation study of seasonal influenza vaccine effectiveness to evaluate these approaches and discuss techniques that show robust inferential performance across model assumptions.
DATA COLLECTION/EXTRACTION METHODS: Demographic information, vaccine status, and self-administered questionnaire surveys were obtained from the longitudinal data files. We linked this information with medical condition files and medical event to extract the disease type and associated expenditures for each medical visit. We excluded individuals who were 18 years or younger at the beginning of each panel.
Under various model assumptions, the IF methods show robust inferential performance when the data-balancing procedures are incorporated. Once IF methods and data-balancing techniques are implemented, contingency table-based RR estimation yields a comparable result to the generalized linear model approach. We demonstrate the applicability of the proposed methods for complex survey data using 2000-2016 MEPS data. When employing these methods, we find a significant, negative association between vaccine effectiveness (VE) estimates and influenza-incurred expenditures.
We describe and demonstrate a robust method for RR estimation and relevant inferences for influenza vaccine effectiveness using MEPS data. The proposed method is flexible and can be extended to weighted data for survey data analysis. Hence, these methods have great potential for health services research, especially when data are nonexperimental and imbalanced.
研究在各种模型假设下,具有理想推断特性的稳健相对风险(RR)估计在调查数据分析中的应用。
我们利用了 2000-2016 年美国医疗支出面板调查(MEPS)家庭部分的二级数据。
我们通过实施影响函数(IF)方法研究了广泛的数据平衡技术,这使我们能够在复杂的调查环境中轻松估计 RR 估计的可变性。我们进行了季节性流感疫苗有效性的模拟研究,以评估这些方法,并讨论在各种模型假设下表现出稳健推断性能的技术。
数据收集/提取方法:从纵向数据文件中获取人口统计信息、疫苗接种状况和自我管理问卷调查。我们将这些信息与医疗状况文件和医疗事件相关联,以提取每次医疗访问的疾病类型和相关支出。我们排除了在每个面板开始时年龄在 18 岁或以下的个体。
在各种模型假设下,当纳入数据平衡程序时,IF 方法显示出稳健的推断性能。一旦实施了 IF 方法和数据平衡技术,基于列联表的 RR 估计就可以得到与广义线性模型方法相当的结果。我们使用 2000-2016 年 MEPS 数据展示了拟议方法在复杂调查数据中的适用性。在采用这些方法时,我们发现疫苗有效性(VE)估计值与流感相关支出之间存在显著的负相关关系。
我们描述并演示了一种使用 MEPS 数据进行 RR 估计和流感疫苗有效性相关推断的稳健方法。所提出的方法具有灵活性,可以扩展到调查数据分析的加权数据。因此,这些方法在卫生服务研究中具有很大的潜力,特别是在数据是非实验性和不平衡的情况下。