Yang Pengju, Zhuzhang Hangyu, Wang Ruirui, Lin Wei, Wang Xinchen
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
Angew Chem Int Ed Engl. 2019 Jan 21;58(4):1134-1137. doi: 10.1002/anie.201810648. Epub 2018 Dec 20.
Photosynthetic conversion of CO into fuel and chemicals is a promising but challenging technology. The bottleneck of this reaction lies in the activation of CO , owing to the chemical inertness of linear CO . Herein, we present a defect-engineering methodology to construct CO activation sites by implanting carbon vacancies (CVs) in the melon polymer (MP) matrix. Positron annihilation spectroscopy confirmed the location and density of the CVs in the MP skeleton. In situ diffuse reflectance infrared Fourier transform spectroscopy and a DFT study revealed that the CVs can function as active sites for CO activation while stabilizing COOH* intermediates, thereby boosting the reaction kinetics. As a result, the modified MP-TAP-CVs displayed a 45-fold improvement in CO -to-CO activity over the pristine MP. The apparent quantum efficiency of the MP-TAP-CVs was 4.8 % at 420 nm. This study sheds new light on the design of high-efficiency polymer semiconductors for CO conversion.
将一氧化碳光合转化为燃料和化学品是一项有前景但具有挑战性的技术。由于线性一氧化碳的化学惰性,该反应的瓶颈在于一氧化碳的活化。在此,我们提出一种缺陷工程方法,通过在瓜类聚合物(MP)基质中植入碳空位(CVs)来构建一氧化碳活化位点。正电子湮没光谱证实了MP骨架中CVs的位置和密度。原位漫反射红外傅里叶变换光谱和密度泛函理论研究表明,CVs可作为一氧化碳活化的活性位点,同时稳定COOH*中间体,从而加快反应动力学。结果,改性后的MP-TAP-CVs在一氧化碳到一氧化碳的活性方面比原始MP提高了45倍。MP-TAP-CVs在420 nm处的表观量子效率为4.8%。这项研究为用于一氧化碳转化的高效聚合物半导体的设计提供了新的思路。