Suppr超能文献

蛋白质溶液中的离子特异性和表面水动力学。

Ion-specificity and surface water dynamics in protein solutions.

机构信息

University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia.

出版信息

Phys Chem Chem Phys. 2018 Dec 12;20(48):30340-30350. doi: 10.1039/c8cp06061d.

Abstract

Ion-specific effects at the protein surface are investigated here in light of the changes they infer to surface water dynamics, as observed by 1H NMR relaxation (at 20 MHz). Two well-known proteins, hen egg-white lysozyme (LZM) and bovine serum albumin (BSA), show qualitatively opposite trends in the transverse relaxation rate, R2(1H), along a series of different monovalent salt anions in the solution. Presence of salt ions increases R2(1H) in the case of lysozyme and diminishes it in the case of BSA. The effect magnifies for larger and more polarizable ions. The same contrasting effect between the two proteins is observed for protein-solvent proton exchange. This hints at subtle effects ion-binding might have on the accessibility of water surface sites on the protein. We suggest that the combination of the density of surface charge residues and surface roughness, at the atomic scale, dictates the response to the presence of salt ions and is proper to each protein. Further, a dramatic increase in R2(1H) is found to correlate closely with the formation of protein aggregates. The same ordering of salts in their ability to aggregate lysozyme, as seen previously by cloud point measurements, is reproduced here by R2(1H). 1H NMR relaxation data is supplemented by 35Cl and 14N NMR relaxation for selected salt ions to probe the ion-binding itself.

摘要

在这里,我们研究了蛋白质表面的离子特性效应,因为它们推断出表面水分子动力学的变化,这是通过 1H NMR 弛豫(在 20 MHz 下)观察到的。两种著名的蛋白质,鸡卵清溶菌酶(LZM)和牛血清白蛋白(BSA),在溶液中的一系列不同单价盐阴离子中,表现出横向弛豫率 R2(1H) 的定性相反趋势。盐离子的存在会增加溶菌酶的 R2(1H),而减少 BSA 的 R2(1H)。对于更大和更极化的离子,这种效应会放大。对于蛋白质-溶剂质子交换,这两种蛋白质之间也观察到相同的对比效应。这暗示了离子结合可能对蛋白质表面水位点的可及性产生微妙影响。我们认为,在原子尺度上,表面电荷残基的密度和表面粗糙度的组合决定了对盐离子存在的响应,并且适合每种蛋白质。此外,发现 R2(1H) 的急剧增加与蛋白质聚集体的形成密切相关。与以前通过浊点测量观察到的溶菌酶聚集能力的盐的相同排序,在此处通过 R2(1H) 重现。为了探测离子结合本身,我们补充了选定盐离子的 35Cl 和 14N NMR 弛豫数据。

相似文献

1
Ion-specificity and surface water dynamics in protein solutions.
Phys Chem Chem Phys. 2018 Dec 12;20(48):30340-30350. doi: 10.1039/c8cp06061d.
2
Multiscale Water Dynamics on Protein Surfaces: Protein-Specific Response to Surface Ions.
J Phys Chem B. 2021 Aug 12;125(31):8673-8681. doi: 10.1021/acs.jpcb.1c02513. Epub 2021 Aug 3.
3
4
Protein-water interaction studied by solvent 1H, 2H, and 17O magnetic relaxation.
Proc Natl Acad Sci U S A. 1975 Jul;72(7):2667-71. doi: 10.1073/pnas.72.7.2667.
6
Relaxation of water protons in highly concentrated aqueous protein systems studied by 1H NMR spectroscopy.
Z Naturforsch C J Biosci. 2001 Nov-Dec;56(11-12):1075-81. doi: 10.1515/znc-2001-11-1226.
7
Water proton NMR-a sensitive probe for solute association.
Chem Commun (Camb). 2015 Apr 21;51(31):6804-7. doi: 10.1039/c5cc00741k.
9
Changes in protein structure and dynamics as a function of hydration from (1)H second moments.
J Magn Reson. 2007 Dec;189(2):166-72. doi: 10.1016/j.jmr.2007.09.005. Epub 2007 Sep 15.
10
Extreme-values statistics and dynamics of water at protein interfaces.
J Phys Chem B. 2011 Nov 10;115(44):12845-58. doi: 10.1021/jp2053426. Epub 2011 Oct 18.

引用本文的文献

1
On the Local Structure of Water Surrounding Inorganic Anions Within Layered Double Hydroxides.
Molecules. 2025 Apr 9;30(8):1678. doi: 10.3390/molecules30081678.
2
Dynamical Transition in Dehydrated Proteins.
J Phys Chem Lett. 2024 Apr 4;15(13):3581-3590. doi: 10.1021/acs.jpclett.3c03584. Epub 2024 Mar 25.
3
Decreased Water Mobility Contributes To Increased α-Synuclein Aggregation.
Angew Chem Weinheim Bergstr Ger. 2023 Feb 6;135(7):e202212063. doi: 10.1002/ange.202212063. Epub 2023 Jan 12.
7
Decreased Water Mobility Contributes To Increased α-Synuclein Aggregation.
Angew Chem Int Ed Engl. 2023 Feb 6;62(7):e202212063. doi: 10.1002/anie.202212063. Epub 2023 Jan 12.
9
Effect of Buffer on Protein Stability in Aqueous Solutions: A Simple Protein Aggregation Model.
J Phys Chem B. 2021 Mar 18;125(10):2504-2512. doi: 10.1021/acs.jpcb.0c10339. Epub 2021 Mar 3.

本文引用的文献

2
Multiscale nuclear magnetic relaxation dispersion of complex liquids in bulk and confinement.
Prog Nucl Magn Reson Spectrosc. 2018 Feb;104:12-55. doi: 10.1016/j.pnmrs.2017.11.001. Epub 2017 Nov 10.
3
Water Proton NMR: A Tool for Protein Aggregation Characterization.
Anal Chem. 2017 May 16;89(10):5494-5502. doi: 10.1021/acs.analchem.7b00464. Epub 2017 May 3.
4
Water Dynamics in the Hydration Shells of Biomolecules.
Chem Rev. 2017 Aug 23;117(16):10694-10725. doi: 10.1021/acs.chemrev.6b00765. Epub 2017 Mar 1.
5
Water Determines the Structure and Dynamics of Proteins.
Chem Rev. 2016 Jul 13;116(13):7673-97. doi: 10.1021/acs.chemrev.5b00664. Epub 2016 May 17.
6
On the crossroads of current polyelectrolyte theory and counterion-specific effects.
Phys Chem Chem Phys. 2015 Feb 28;17(8):5650-8. doi: 10.1039/c4cp05469e.
7
Presence of hydrophobic groups may modify the specific ion effect in aqueous polyelectrolyte solutions.
J Phys Chem B. 2013 Apr 4;117(13):3682-8. doi: 10.1021/jp401313f. Epub 2013 Mar 26.
8
Hofmeister challenges: ion binding and charge of the BSA protein as explicit examples.
Langmuir. 2012 Nov 27;28(47):16355-63. doi: 10.1021/la3035984. Epub 2012 Nov 13.
9
Molecular mobility in dense protein systems: an investigation through 1H NMR relaxometry and diffusometry.
J Phys Chem B. 2012 Sep 27;116(38):11744-53. doi: 10.1021/jp306078k. Epub 2012 Sep 14.
10
Aqueous solutions of ionenes: interactions and counterion specific effects as seen by neutron scattering.
Phys Chem Chem Phys. 2012 Oct 5;14(37):12898-904. doi: 10.1039/c2cp41859b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验