Department of Mechanical Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran.
Department of Chemical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran.
Mol Inform. 2019 Apr;38(4):e1800094. doi: 10.1002/minf.201800094. Epub 2018 Nov 29.
The present study introduces a QSPR model to predict the flash point of pure organic compounds from diverse chemical families. We used the Maximum-Relevance Minimum-Redundancy (MRMR) as an efficient descriptor selection algorithm to select 20 the most effective out of 1926 calculated descriptors. The selected descriptors and their combination with the normal boiling point data were used as model inputs and their correlation with FP was mapped using feedforward artificial neural networks. Studying various models, the best result was obtained by a neural network with 2 neurons in the hidden layer for which a combination of the selected descriptors and normal boiling point data were used as model inputs. Evaluating the performance of this model for a dataset of 727 compounds resulted in average absolute relative errors of of 1.36 %, 1.34 %, 1.44 % and 1.42 % and average absolute deviations of 4.48, 4.41, 4.75 and 4.66 K for the overall, training, validation, and test datasets, respectively.
本研究提出了一个 QSPR 模型,用于预测来自不同化学家族的纯有机化合物的闪点。我们使用最大相关性最小冗余(MRMR)作为有效的描述符选择算法,从 1926 个计算描述符中选择了 20 个最有效的描述符。选择的描述符及其与正常沸点数据的组合被用作模型输入,并使用前馈人工神经网络映射它们与 FP 的相关性。通过研究各种模型,我们发现具有 2 个隐藏层神经元的神经网络得到了最好的结果,该神经网络将选择的描述符和正常沸点数据的组合作为模型输入。该模型对 727 种化合物数据集的性能进行评估,结果表明,对于整个数据集、训练数据集、验证数据集和测试数据集,平均绝对相对误差分别为 1.36%、1.34%、1.44%和 1.42%,平均绝对偏差分别为 4.48、4.41、4.75 和 4.66 K。