Laboratory of Silicates, Polymers and Nanocomposites (LSPN), Université 8 Mai 1945 Guelma, BP 401, Guelma, 24000, Algeria.
Laboratory of Silicates, Polymers and Nanocomposites (LSPN), Université 8 Mai 1945 Guelma, BP 401, Guelma, 24000, Algeria.
J Mol Graph Model. 2019 Mar;87:109-120. doi: 10.1016/j.jmgm.2018.11.013. Epub 2018 Nov 29.
This work aimed to predict the normal boiling point temperature (Tb) and relative liquid density (d20) of petroleum fractions and pure hydrocarbons, through a multi-layer perceptron artificial neural network (MLP-ANN) based on the molecular descriptors. A set of 223 and 222 diverse data points for Tb and d20 were respectively used to build two quantitative structure property relationships-artificial neural network (QSPR-ANN) models. For each model, the total database was divided respectively into two subsets: 80% for the training set and 20% for the test set. A total of 1666 descriptors were calculated, and the statistical reduction methodology, based on the Multiple Linear Regression (MLR) method, has been adopted. The Quasi-Newton back propagation (BFGS) algorithm was applied in order to train the ANN. A comparison was made between the outcomes of obtained QSPR-ANN models and other well-known correlations for each property. The two best QSPR-ANN models result showed a good accuracy confirmed by the high determination coefficient (R) values and the low mean absolute percentage error (MAPE) values ranging from 0.9999 to 0.9931 and from 0.5797 to 0.2600%, respectively for both best models (Tb and d20 models). Furthermore, the comparison between our models and the other quantitative structure property relationships (QSPR) models shows that the QSPR-ANN models provided better results. This computational approach can be applied in the petroleum engineering for an accurate determination of Tb and d20 of pure hydrocarbons.
本工作旨在通过基于分子描述符的多层感知器人工神经网络(MLP-ANN)来预测石油馏分和纯烃的正常沸点温度(Tb)和相对液体密度(d20)。分别使用了 223 个和 222 个不同的 Tb 和 d20 数据点来建立两个定量构效关系-人工神经网络(QSPR-ANN)模型。对于每个模型,将整个数据库分别分为两个子集:80%用于训练集,20%用于测试集。共计算了 1666 个描述符,并采用了基于多元线性回归(MLR)方法的统计降维方法。采用拟牛顿反向传播(BFGS)算法来训练 ANN。将所得 QSPR-ANN 模型的结果与每种性质的其他著名相关性进行了比较。两个最佳的 QSPR-ANN 模型结果显示出了良好的准确性,其确定系数(R)值较高,平均绝对百分比误差(MAPE)值较低,分别为 0.9999 至 0.9931 和 0.5797 至 0.2600%,对于两个最佳模型(Tb 和 d20 模型)都是如此。此外,我们的模型与其他定量构效关系(QSPR)模型之间的比较表明,QSPR-ANN 模型提供了更好的结果。这种计算方法可应用于石油工程中,以准确确定纯烃的 Tb 和 d20。