Suppr超能文献

用于估算纯烃临界性质的QSPR-ANN模型的开发。

Development of QSPR-ANN models for the estimation of critical properties of pure hydrocarbons.

作者信息

Roubehie Fissa Mohamed, Lahiouel Yasmina, Khaouane Latifa, Hanini Salah

机构信息

Laboratory of Biomaterials and Transport Phenomena (LBMPT), University of Medea, 26000, Medea, Algeria.

Laboratory of Silicates, Polymers and Nanocomposites (LSPN), Université 8 Mai 1945 Guelma, BP 401, Guelma, 24000, Algeria.

出版信息

J Mol Graph Model. 2023 Jun;121:108450. doi: 10.1016/j.jmgm.2023.108450. Epub 2023 Mar 7.

Abstract

The current work aimed to predict three critical properties: critical temperature (Tc), critical volume (Vc), and critical pressure (Pc) of pure hydrocarbons. A multi-layer perceptron artificial neural network (MLP-ANN) has been adopted as a nonlinear modeling technique and computational approach based on a few relevant molecular descriptors. A set of diverse data points was used to build three QSPR-ANN models, including 223 points for Tc, Vc, and 221 for Pc. The entire database was randomly split into two subsets: 80% for the training set and 20% for the testing set. A large number of 1666 molecular descriptors were calculated and then reduced by a statistical methodology based on several phases to retain them into a reasonable number of relevant descriptors, wherein about 99% of initial descriptors were excluded. Thus, the Quasi-Newton backpropagation (BFGS) algorithm was applied to train the ANN structure. The results of three QSPR-ANN models showed good precision, confirmed by the high values of determination coefficient (R) ranging from 0.9990 to 0.9945, and the low values of calculated errors, such as the Mean Absolute Percentage Error (MAPE) that ranged from 2.2497 to 0.7424% for the best three models of Tc, Vc, and Pc. The weight sensitivity analysis method was applied to know the contribution of each input descriptor individually or by class on each appropriate QSPR-ANN model. Moreover, the applicability domain (AD) method was also used with a strict limit of standardized residual values (d = ±2). However, the results were promising, with nearly 88% of the data points validated within the AD range. Finally, the results of the proposed QSPR-ANN models were compared with other well-known QSPR or ANN models for each property. Consequently, our three models provided satisfactory results, outperforming most of the models mentioned in this comparison. This computational approach can be applied in petroleum engineering and other related fields to accurately determine the critical properties of pure hydrocarbons: Tc, Vc, and Pc.

摘要

当前的工作旨在预测纯烃的三个关键性质

临界温度(Tc)、临界体积(Vc)和临界压力(Pc)。多层感知器人工神经网络(MLP-ANN)已被用作一种基于一些相关分子描述符的非线性建模技术和计算方法。一组多样的数据点被用于构建三个定量构效关系-人工神经网络(QSPR-ANN)模型,其中包括用于Tc的223个点、用于Vc的223个点以及用于Pc的221个点。整个数据库被随机分为两个子集:80%用于训练集,20%用于测试集。计算了大量的1666个分子描述符,然后通过基于几个阶段的统计方法进行缩减,以将它们保留为合理数量的相关描述符,其中约99%的初始描述符被排除。因此,应用拟牛顿反向传播(BFGS)算法来训练人工神经网络结构。三个QSPR-ANN模型的结果显示出良好的精度,这通过决定系数(R)的高值(范围从0.9990到0.9945)以及计算误差的低值得到证实,例如对于Tc、Vc和Pc的最佳三个模型,平均绝对百分比误差(MAPE)的范围从2.2497%到0.7424%。应用权重敏感性分析方法来了解每个输入描述符单独或按类别对每个合适的QSPR-ANN模型的贡献。此外,适用性域(AD)方法也被用于标准化残差值(d = ±2)的严格限制。然而,结果很有前景,近88%的数据点在AD范围内得到验证。最后,将所提出的QSPR-ANN模型的结果与针对每个性质的其他知名QSPR或ANN模型进行比较。因此,我们的三个模型提供了令人满意的结果,优于该比较中提到的大多数模型。这种计算方法可应用于石油工程和其他相关领域,以准确确定纯烃的关键性质:Tc、Vc和Pc。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验