Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
Department of Marketing, Coller School of Management, Tel Aviv University, Tel Aviv, Israel.
Wiley Interdiscip Rev Cogn Sci. 2019 Mar;10(2):e1485. doi: 10.1002/wcs.1485. Epub 2018 Nov 29.
In the last decade, the field of consumer neuroscience, or neuromarketing, has been flourishing, with numerous publications, academic programs, initiatives, and companies. The demand for objective neural measures to quantify consumers' preferences and predict responses to marketing campaigns is ever on the rise, particularly due to the limitations of traditional marketing techniques, such as questionnaires, focus groups, and interviews. However, research has yet to converge on a unified methodology or conclusive results that can be applied in the industry. In this review, we present the potential of electroencephalography (EEG)-based preference prediction. We summarize previous EEG research and propose features which have shown promise in capturing the consumers' evaluation process, including components acquired from an event-related potential design, inter-subject correlations, hemispheric asymmetry, and various spectral band powers. Next, we review the latest findings on attempts to predict preferences based on various features of the EEG signal. Finally, we conclude with several recommended guidelines for prediction. Chiefly, we stress the need to demonstrate that neural measures contribute to preference prediction beyond what traditional measures already provide. Second, prediction studies in neuromarketing should adopt the standard practices and methodology used in data science and prediction modeling that is common in other fields such as computer science and engineering. This article is categorized under: Economics > Interactive Decision-Making Economics > Individual Decision-Making Psychology > Prediction Neuroscience > Cognition.
在过去的十年中,消费者神经科学领域(或神经营销学)蓬勃发展,出现了大量的出版物、学术项目、举措和公司。由于传统营销技术(如问卷调查、焦点小组和访谈)的局限性,对客观神经测量方法的需求越来越大,以量化消费者的偏好并预测对营销活动的反应。然而,研究尚未达成统一的方法或可应用于该行业的明确结论。在这篇综述中,我们提出了基于脑电图(EEG)的偏好预测的潜力。我们总结了以前的 EEG 研究,并提出了一些有希望捕捉消费者评估过程的特征,包括来自事件相关电位设计、主体间相关性、半球不对称性和各种频谱带功率的成分。接下来,我们回顾了基于 EEG 信号的各种特征来预测偏好的最新发现。最后,我们提出了一些预测建议。主要的是,我们强调需要证明神经测量方法除了传统测量方法已经提供的方法之外,还可以为偏好预测做出贡献。其次,神经营销学中的预测研究应该采用数据科学和预测建模中使用的标准实践和方法,这些方法在计算机科学和工程等其他领域中很常见。本文属于以下分类:经济学>互动决策经济学>个体决策心理学>预测神经科学>认知。
Wiley Interdiscip Rev Cogn Sci. 2018-11-29
Front Hum Neurosci. 2022-5-26
Food Res Int. 2017-11-22
Annu Int Conf IEEE Eng Med Biol Soc. 2021-11
Brain Inform. 2024-6-5
PNAS Nexus. 2025-2-25
Front Hum Neurosci. 2024-11-18
Brain Inform. 2024-6-5
J Neuroimaging. 2024
Front Hum Neurosci. 2024-3-20
Front Hum Neurosci. 2023-6-5