Hakim Adam, Golan Itamar, Yefet Sharon, Levy Dino J
Neuroeconomics and Neuromarketing Lab, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel.
Amir Globerson Research Group, Blavatnik School of Computer Science, Tel Aviv-Yafo, Israel.
Front Hum Neurosci. 2023 Jun 5;17:1153413. doi: 10.3389/fnhum.2023.1153413. eCollection 2023.
There is an increasing demand within consumer-neuroscience (or neuromarketing) for objective neural measures to quantify consumers' subjective valuations and predict responses to marketing campaigns. However, the properties of EEG raise difficulties for these aims: small datasets, high dimensionality, elaborate manual feature extraction, intrinsic noise, and between-subject variations. We aimed to overcome these limitations by combining unique techniques of Deep Learning Networks (DLNs), while providing interpretable results for neuroscientific and decision-making insight. In this study, we developed a DLN to predict subjects' willingness to pay (WTP) based on their EEG data. In each trial, 213 subjects observed a product's image, from 72 possible products, and then reported their WTP for the product. The DLN employed EEG recordings from product observation to predict the corresponding reported WTP values. Our results showed 0.276 test root-mean-square-error and 75.09% test accuracy in predicting high vs. low WTP, surpassing other models and a manual feature extraction approach. Network visualizations provided the predictive frequencies of neural activity, their scalp distributions, and critical timepoints, shedding light on the neural mechanisms involved with evaluation. In conclusion, we show that DLNs may be the superior method to perform EEG-based predictions, to the benefit of decision-making researchers and marketing practitioners alike.
在消费者神经科学(或神经营销学)领域,对用于量化消费者主观估值并预测其对营销活动反应的客观神经测量方法的需求日益增长。然而,脑电图(EEG)的特性给实现这些目标带来了困难:数据集小、维度高、需要精心进行手动特征提取、存在内在噪声以及个体间差异。我们旨在通过结合深度学习网络(DLN)的独特技术来克服这些限制,同时为神经科学和决策洞察提供可解释的结果。在本研究中,我们开发了一个基于受试者的脑电图数据预测其支付意愿(WTP)的深度学习网络。在每次试验中,213名受试者观察了72种可能产品中的一种产品的图片,然后报告他们对该产品的支付意愿。深度学习网络利用产品观察期间的脑电图记录来预测相应报告的支付意愿值。我们的结果显示,在预测高支付意愿与低支付意愿时,测试均方根误差为0.276,测试准确率为75.09%,超过了其他模型和手动特征提取方法。网络可视化展示了神经活动的预测频率、它们在头皮上的分布以及关键时间点,揭示了与评估相关的神经机制。总之,我们表明深度学习网络可能是进行基于脑电图预测的优越方法,这对决策研究人员和营销从业者都有益处。
Front Hum Neurosci. 2023-6-5
Front Hum Neurosci. 2022-5-26
Wiley Interdiscip Rev Cogn Sci. 2018-11-29
Sensors (Basel). 2022-12-12
Front Neurosci. 2018-3-13
PeerJ Comput Sci. 2022-4-26
Biol Psychiatry Cogn Neurosci Neuroimaging. 2025-4
Brain Inform. 2024-6-5
IEEE/ACM Trans Comput Biol Bioinform. 2021
Front Neurosci. 2020-7-15
IEEE Trans Neural Netw Learn Syst. 2021-7
BMC Bioinformatics. 2019-12-2
Brain Sci. 2019-11-14
Neuroimage. 2019-11-4
Comput Intell Neurosci. 2019-9-18
J Neural Eng. 2019-8-14