文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度支付:深度学习解码脑电图以预测消费者对神经营销的支付意愿。

DeePay: deep learning decodes EEG to predict consumer's willingness to pay for neuromarketing.

作者信息

Hakim Adam, Golan Itamar, Yefet Sharon, Levy Dino J

机构信息

Neuroeconomics and Neuromarketing Lab, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel.

Amir Globerson Research Group, Blavatnik School of Computer Science, Tel Aviv-Yafo, Israel.

出版信息

Front Hum Neurosci. 2023 Jun 5;17:1153413. doi: 10.3389/fnhum.2023.1153413. eCollection 2023.


DOI:10.3389/fnhum.2023.1153413
PMID:37342823
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10277553/
Abstract

There is an increasing demand within consumer-neuroscience (or neuromarketing) for objective neural measures to quantify consumers' subjective valuations and predict responses to marketing campaigns. However, the properties of EEG raise difficulties for these aims: small datasets, high dimensionality, elaborate manual feature extraction, intrinsic noise, and between-subject variations. We aimed to overcome these limitations by combining unique techniques of Deep Learning Networks (DLNs), while providing interpretable results for neuroscientific and decision-making insight. In this study, we developed a DLN to predict subjects' willingness to pay (WTP) based on their EEG data. In each trial, 213 subjects observed a product's image, from 72 possible products, and then reported their WTP for the product. The DLN employed EEG recordings from product observation to predict the corresponding reported WTP values. Our results showed 0.276 test root-mean-square-error and 75.09% test accuracy in predicting high vs. low WTP, surpassing other models and a manual feature extraction approach. Network visualizations provided the predictive frequencies of neural activity, their scalp distributions, and critical timepoints, shedding light on the neural mechanisms involved with evaluation. In conclusion, we show that DLNs may be the superior method to perform EEG-based predictions, to the benefit of decision-making researchers and marketing practitioners alike.

摘要

在消费者神经科学(或神经营销学)领域,对用于量化消费者主观估值并预测其对营销活动反应的客观神经测量方法的需求日益增长。然而,脑电图(EEG)的特性给实现这些目标带来了困难:数据集小、维度高、需要精心进行手动特征提取、存在内在噪声以及个体间差异。我们旨在通过结合深度学习网络(DLN)的独特技术来克服这些限制,同时为神经科学和决策洞察提供可解释的结果。在本研究中,我们开发了一个基于受试者的脑电图数据预测其支付意愿(WTP)的深度学习网络。在每次试验中,213名受试者观察了72种可能产品中的一种产品的图片,然后报告他们对该产品的支付意愿。深度学习网络利用产品观察期间的脑电图记录来预测相应报告的支付意愿值。我们的结果显示,在预测高支付意愿与低支付意愿时,测试均方根误差为0.276,测试准确率为75.09%,超过了其他模型和手动特征提取方法。网络可视化展示了神经活动的预测频率、它们在头皮上的分布以及关键时间点,揭示了与评估相关的神经机制。总之,我们表明深度学习网络可能是进行基于脑电图预测的优越方法,这对决策研究人员和营销从业者都有益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/fb0285902aac/fnhum-17-1153413-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/ff95fe01bcd4/fnhum-17-1153413-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/a5168ca5911c/fnhum-17-1153413-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/10408c77b79a/fnhum-17-1153413-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/a247907e63a2/fnhum-17-1153413-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/5034d9bc8d6c/fnhum-17-1153413-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/579dd9b518b0/fnhum-17-1153413-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/d3c24bed6148/fnhum-17-1153413-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/83ef6cbe0f66/fnhum-17-1153413-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/fb0285902aac/fnhum-17-1153413-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/ff95fe01bcd4/fnhum-17-1153413-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/a5168ca5911c/fnhum-17-1153413-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/10408c77b79a/fnhum-17-1153413-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/a247907e63a2/fnhum-17-1153413-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/5034d9bc8d6c/fnhum-17-1153413-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/579dd9b518b0/fnhum-17-1153413-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/d3c24bed6148/fnhum-17-1153413-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/83ef6cbe0f66/fnhum-17-1153413-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c679/10277553/fb0285902aac/fnhum-17-1153413-g009.jpg

相似文献

[1]
DeePay: deep learning decodes EEG to predict consumer's willingness to pay for neuromarketing.

Front Hum Neurosci. 2023-6-5

[2]
The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study.

Physiol Behav. 2019-4-29

[3]
BCI-Based Consumers' Choice Prediction From EEG Signals: An Intelligent Neuromarketing Framework.

Front Hum Neurosci. 2022-5-26

[4]
A gateway to consumers' minds: Achievements, caveats, and prospects of electroencephalography-based prediction in neuromarketing.

Wiley Interdiscip Rev Cogn Sci. 2018-11-29

[5]
An Ensemble Model for Consumer Emotion Prediction Using EEG Signals for Neuromarketing Applications.

Sensors (Basel). 2022-12-12

[6]
An intelligent neuromarketing system for predicting consumers' future choice from electroencephalography signals.

Physiol Behav. 2022-9-1

[7]
A review on the use of eeg for the investigation of the factors that affect Consumer's behavior.

Physiol Behav. 2024-5-1

[8]
Frontal Brain Asymmetry and Willingness to Pay.

Front Neurosci. 2018-3-13

[9]
Unlocking the Subconscious Consumer Bias: A Survey on the Past, Present, and Future of Hybrid EEG Schemes in Neuromarketing.

Front Neuroergon. 2021-5-17

[10]
Feature selection of EEG signals in neuromarketing.

PeerJ Comput Sci. 2022-4-26

引用本文的文献

[1]
Using Electroencephalography to Advance Mindfulness Science: A Survey of Emerging Methods and Approaches.

Biol Psychiatry Cogn Neurosci Neuroimaging. 2025-4

[2]
A systematic review on EEG-based neuromarketing: recent trends and analyzing techniques.

Brain Inform. 2024-6-5

本文引用的文献

[1]
EEG-Based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications.

IEEE/ACM Trans Comput Biol Bioinform. 2021

[2]
Measuring Neural Arousal for Advertisements and Its Relationship With Advertising Success.

Front Neurosci. 2020-7-15

[3]
Time-Frequency Representation and Convolutional Neural Network-Based Emotion Recognition.

IEEE Trans Neural Netw Learn Syst. 2021-7

[4]
An empirical comparison of neural networks and machine learning algorithms for EEG gait decoding.

Sci Rep. 2020-3-9

[5]
A hybrid self-attention deep learning framework for multivariate sleep stage classification.

BMC Bioinformatics. 2019-12-2

[6]
EEG Emotion Classification Using an Improved SincNet-Based Deep Learning Model.

Brain Sci. 2019-11-14

[7]
Predicting individual decision-making responses based on single-trial EEG.

Neuroimage. 2019-11-4

[8]
Consumer Behaviour through the Eyes of Neurophysiological Measures: State-of-the-Art and Future Trends.

Comput Intell Neurosci. 2019-9-18

[9]
Deep learning-based electroencephalography analysis: a systematic review.

J Neural Eng. 2019-8-14

[10]
The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study.

Physiol Behav. 2019-4-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索