Mashrur Fazla Rabbi, Rahman Khandoker Mahmudur, Miya Mohammad Tohidul Islam, Vaidyanathan Ravi, Anwar Syed Ferhat, Sarker Farhana, Mamun Khondaker A
Advanced Intelligent Multidisciplinary Systems (AIMS) Lab, Institute for Advanced Research (IAR), United International University, Dhaka, Bangladesh.
School of Business and Economics, United International University, Dhaka, Bangladesh.
Front Hum Neurosci. 2022 May 26;16:861270. doi: 10.3389/fnhum.2022.861270. eCollection 2022.
Neuromarketing relies on Brain Computer Interface (BCI) technology to gain insight into how customers react to marketing stimuli. Marketers spend about 750 billion annually on traditional marketing camping. They use traditional marketing research procedures such as Personal Depth Interviews, Surveys, Focused Group Discussions, and so on, which are frequently criticized for failing to extract true consumer preferences. On the other hand, Neuromarketing promises to overcome such constraints. This work proposes a machine learning framework for predicting consumers' purchase intention (PI) and affective attitude (AA) from analyzing EEG signals. In this work, EEG signals are collected from 20 healthy participants while administering three advertising stimuli settings: product, endorsement, and promotion. After preprocessing, features are extracted in three domains (time, frequency, and time-frequency). Then, after selecting features using wrapper-based methods Recursive Feature Elimination, Support Vector Machine is used for categorizing positive and negative (AA and PI). The experimental results show that proposed framework achieves an accuracy of 84 and 87.00% for PI and AA ensuring the simulation of real-life results. In addition, AA and PI signals show N200 and N400 components when people tend to take decision after visualizing static advertisement. Moreover, negative AA signals shows more dispersion than positive AA signals. Furthermore, this work paves the way for implementing such a neuromarketing framework using consumer-grade EEG devices in a real-life setting. Therefore, it is evident that BCI-based neuromarketing technology can help brands and businesses effectively predict future consumer preferences. Hence, EEG-based neuromarketing technologies can assist brands and enterprizes in accurately forecasting future consumer preferences.
神经营销依靠脑机接口(BCI)技术来深入了解消费者对营销刺激的反应。营销人员每年在传统营销活动上的花费约为7500亿美元。他们使用传统的营销研究程序,如个人深度访谈、调查、焦点小组讨论等,这些方法经常因未能提取出真正的消费者偏好而受到批评。另一方面,神经营销有望克服这些限制。这项工作提出了一个机器学习框架,用于通过分析脑电图(EEG)信号来预测消费者的购买意愿(PI)和情感态度(AA)。在这项工作中,从20名健康参与者身上收集EEG信号,同时设置三种广告刺激场景:产品、代言和促销。经过预处理后,在三个领域(时间、频率和时频)提取特征。然后,使用基于包装器的方法递归特征消除来选择特征后,支持向量机用于对积极和消极(AA和PI)进行分类。实验结果表明,所提出的框架在PI和AA方面的准确率分别达到84%和87.00%,确保了对现实生活结果的模拟。此外,当人们在观看静态广告后倾向于做出决定时,AA和PI信号显示出N200和N400成分。而且,消极的AA信号比积极的AA信号表现出更多的离散性。此外,这项工作为在现实生活环境中使用消费级EEG设备实施这样的神经营销框架铺平了道路。因此,基于BCI的神经营销技术显然可以帮助品牌和企业有效地预测未来消费者的偏好。因此,基于EEG的神经营销技术可以帮助品牌和企业准确预测未来消费者的偏好。