Suppr超能文献

从基因工程培养神经元中分离突触小泡。

Isolation of synaptic vesicles from genetically engineered cultured neurons.

机构信息

Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.

Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Waehringerstrasse 13A, 1090, Vienna, Austria.

出版信息

J Neurosci Methods. 2019 Jan 15;312:114-121. doi: 10.1016/j.jneumeth.2018.11.018. Epub 2018 Nov 26.

Abstract

BACKGROUND

Synaptic vesicles (SVs) are an integral part of the neurotransmission machinery, and isolation of SVs from their host neuron is necessary to reveal their most fundamental biochemical and functional properties in in vitro assays. Isolated SVs from neurons that have been genetically engineered, e.g. to introduce genetically encoded indicators, are not readily available but would permit new insights into SV structure and function. Furthermore, it is unclear if cultured neurons can provide sufficient starting material for SV isolation procedures.

NEW METHOD

Here, we demonstrate an efficient ex vivo procedure to obtain functional SVs from cultured rat cortical neurons after genetic engineering with a lentivirus.

RESULTS

We show that ∼10 plated cortical neurons allow isolation of suitable SV amounts for functional analysis and imaging. We found that SVs isolated from cultured neurons have neurotransmitter uptake comparable to that of SVs isolated from intact cortex. Using total internal reflection fluorescence (TIRF) microscopy, we visualized an exogenous SV-targeted marker protein and demonstrated the high efficiency of SV modification.

COMPARISON WITH EXISTING METHODS

Obtaining SVs from genetically engineered neurons currently generally requires the availability of transgenic animals, which is constrained by technical (e.g. cost and time) and biological (e.g. developmental defects and lethality) limitations.

CONCLUSIONS

These results demonstrate the modification and isolation of functional SVs using cultured neurons and viral transduction. The ability to readily obtain SVs from genetically engineered neurons will permit linking in situ studies to in vitro experiments in a variety of genetic contexts.

摘要

背景

突触小泡(SVs)是神经传递机制的一个组成部分,从宿主神经元中分离 SVs 对于揭示其在体外测定中的最基本的生化和功能特性是必要的。然而,经过基因工程改造的神经元(例如,引入基因编码指示剂)中分离出的 SVs 并不容易获得,但可以深入了解 SV 的结构和功能。此外,尚不清楚培养的神经元是否可以为 SV 分离程序提供足够的起始材料。

新方法

本文中,我们展示了一种从基因工程化培养的大鼠皮质神经元中获得功能性 SV 的有效离体程序。

结果

我们表明,约 10 个培养的皮质神经元可以分离出足够数量的 SV,用于功能分析和成像。我们发现,从培养神经元中分离出的 SV 具有与从完整皮质中分离出的 SV 相当的神经递质摄取能力。使用全内反射荧光(TIRF)显微镜,我们可视化了一个外源性 SV 靶向标记蛋白,并证明了 SV 修饰的高效率。

与现有方法的比较

目前,从基因工程化神经元中获得 SV 通常需要具有转基因动物的可用性,这受到技术(例如成本和时间)和生物学(例如发育缺陷和致死性)限制的约束。

结论

这些结果证明了使用培养神经元和病毒转导进行功能性 SV 的修饰和分离。能够从基因工程化神经元中轻易获得 SV 将允许将原位研究与各种遗传背景下的体外实验联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验