Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States.
New York University School of Medicine, Metabolomics Core Resource Laboratory at NYU Langone Health, New York, United States.
Elife. 2020 Oct 12;9:e59699. doi: 10.7554/eLife.59699.
Neurons communicate by the activity-dependent release of small-molecule neurotransmitters packaged into synaptic vesicles (SVs). Although many molecules have been identified as neurotransmitters, technical limitations have precluded a full metabolomic analysis of SV content. Here, we present a workflow to rapidly isolate SVs and to interrogate their metabolic contents at high-resolution using mass spectrometry. We validated the enrichment of glutamate in SVs of primary cortical neurons using targeted polar metabolomics. Unbiased and extensive global profiling of SVs isolated from these neurons revealed that the only detectable polar metabolites they contain are the established neurotransmitters glutamate and GABA. In addition, we adapted the approach to enable quick capture of SVs directly from brain tissue and determined the neurotransmitter profiles of diverse brain regions in a cell-type-specific manner. The speed, robustness, and precision of this method to interrogate SV contents will facilitate novel insights into the chemical basis of neurotransmission.
神经元通过活动依赖性释放包裹在突触小泡 (SVs) 中的小分子神经递质进行通讯。尽管已经鉴定出许多分子作为神经递质,但技术限制排除了对 SV 内容进行全面代谢组学分析的可能性。在这里,我们提出了一种快速分离 SVs 并使用质谱法高分辨率检测其代谢物含量的工作流程。我们使用靶向极性代谢组学验证了原代皮质神经元 SVs 中谷氨酸的富集。对从这些神经元中分离出的 SVs 进行无偏和广泛的全局分析表明,它们仅含有可检测的极性代谢物是已建立的神经递质谷氨酸和 GABA。此外,我们还改进了该方法,使其能够快速从脑组织中直接捕获 SVs,并以细胞类型特异性的方式确定不同脑区的神经递质谱。这种方法快速、稳健且精确地检测 SV 含量,将有助于深入了解神经传递的化学基础。