Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA; Department of Biology, University of Nebraska-Kearney, Kearney, NE, USA.
Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA; Vascular Biology Center, Augusta University, Augusta, GA, USA.
Eur J Pharmacol. 2019 Feb 5;844:26-37. doi: 10.1016/j.ejphar.2018.11.027. Epub 2018 Nov 28.
Diabetes-induced vascular endothelial dysfunction has been reported to involve hyperglycemia-induced increases in arginase activity. However, upstream mediators of this effect are not clear. Here, we have tested involvement of Rho kinase, ERK1/2 and p38 MAPK pathways in this process. Studies were performed with aortas isolated from wild type or hemizygous arginase 1 knockout (Arg1) mice and bovine aortic endothelial cells exposed to high glucose (HG, 25 mmol/l) or normal glucose (NG, 5.5 mmol/l) conditions for different times. Effects of inhibitors of arginase, p38 MAPK, ERK1/2 or ROCK and ex vivo adenoviral delivery of active Arg1 and inactive (D128-Arg1) cDNA were also determined. Exposure in wild type aorta or endothelial cells to HG significantly increased arginase activity and Arg1 expression and impaired aortic relaxation. Transduction of wild type aorta with active Arg1 cDNA impaired vascular relaxation, whereas inactive Arg1 had no effect. The HG-induced vascular endothelial dysfunction was associated with increased phosphorylation (activation) of ERK1/2 and p38 MAPK. Pretreatment with inhibitors of ERK1/2, p38 MAPK, ROCK or arginase blocked HG-induced elevation of arginase activity and Arg1 expression and prevented the vascular dysfunction. Inhibition of ROCK blunted the HG-induced activation of ERK1/2 and p38 MAPK. In summary, activated ROCK and subsequent activation of ERK1/2 or p38 MAPK elevates arginase activity and Arg1 expression in hyperglycemic states. Targeting this pathway may provide an effective means for preventing diabetes/hyperglycemia-induced vascular endothelial dysfunction.
糖尿病引起的血管内皮功能障碍已被报道涉及高血糖诱导的精氨酸酶活性增加。然而,这种效应的上游介质尚不清楚。在这里,我们已经测试了 Rho 激酶、ERK1/2 和 p38 MAPK 途径在此过程中的参与。使用来自野生型或杂合子精氨酸酶 1 敲除(Arg1)小鼠的主动脉和暴露于高葡萄糖(HG,25mmol/l)或正常葡萄糖(NG,5.5mmol/l)条件下不同时间的牛主动脉内皮细胞进行了研究。还确定了精氨酸酶、p38 MAPK、ERK1/2 或 ROCK 的抑制剂以及活性 Arg1 和无活性(D128-Arg1)cDNA 的外生腺病毒传递的影响。在野生型主动脉或内皮细胞中暴露于 HG 显著增加了精氨酸酶活性和 Arg1 表达,并损害了主动脉松弛。野生型主动脉的转导与活性 Arg1 cDNA 损害血管松弛,而无活性 Arg1 没有影响。HG 诱导的血管内皮功能障碍与 ERK1/2 和 p38 MAPK 的磷酸化(激活)增加有关。ERK1/2、p38 MAPK、ROCK 或精氨酸酶抑制剂的预处理阻断了 HG 诱导的精氨酸酶活性和 Arg1 表达的升高,并防止了血管功能障碍。ROCK 抑制剂减弱了 HG 诱导的 ERK1/2 和 p38 MAPK 的激活。总之,激活的 ROCK 和随后的 ERK1/2 或 p38 MAPK 的激活在高血糖状态下升高了精氨酸酶活性和 Arg1 表达。靶向该途径可能为预防糖尿病/高血糖引起的血管内皮功能障碍提供一种有效手段。