Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Mol Cell. 2019 Jan 3;73(1):183-194.e8. doi: 10.1016/j.molcel.2018.10.037. Epub 2018 Nov 29.
Mutations that lead to splicing defects can have severe consequences on gene function and cause disease. Here, we explore how human genetic variation affects exon recognition by developing a multiplexed functional assay of splicing using Sort-seq (MFASS). We assayed 27,733 variants in the Exome Aggregation Consortium (ExAC) within or adjacent to 2,198 human exons in the MFASS minigene reporter and found that 3.8% (1,050) of variants, most of which are extremely rare, led to large-effect splice-disrupting variants (SDVs). Importantly, we find that 83% of SDVs are located outside of canonical splice sites, are distributed evenly across distinct exonic and intronic regions, and are difficult to predict a priori. Our results indicate extant, rare genetic variants can have large functional effects on splicing at appreciable rates, even outside the context of disease, and MFASS enables their empirical assessment at scale.
导致 splicing 缺陷的突变会对基因功能产生严重影响,并导致疾病。在这里,我们通过开发一种使用 Sort-seq(MFASS)的外显子识别的多路复用功能分析 splicing 来探索人类遗传变异如何影响 exon 识别。我们在 MFASS 迷你基因报告器中分析了 Exome Aggregation Consortium(ExAC)内或附近的 27,733 个变体,发现 3.8%(1,050)的变体导致大效应剪接破坏变体(SDV)。重要的是,我们发现 83%的 SDV 位于规范剪接位点之外,均匀分布在不同的外显子和内含子区域,并且难以预先预测。我们的结果表明,即使在没有疾病的情况下,现存的罕见遗传变异也会以可观的频率对 splicing 产生很大的功能影响,并且 MFASS 可以大规模地对其进行经验评估。