Suppr超能文献

小核糖体亚基和大核糖体亚基缺陷导致不同的基因表达特征,这些特征反映了细胞的生长速度。

Small and Large Ribosomal Subunit Deficiencies Lead to Distinct Gene Expression Signatures that Reflect Cellular Growth Rate.

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, Institute of Biochemistry, ETH, 8093 Zurich, Switzerland.

出版信息

Mol Cell. 2019 Jan 3;73(1):36-47.e10. doi: 10.1016/j.molcel.2018.10.032. Epub 2018 Nov 29.

Abstract

Levels of the ribosome, the conserved molecular machine that mediates translation, are tightly linked to cellular growth rate. In humans, ribosomopathies are diseases associated with cell-type-specific pathologies and reduced ribosomal protein (RP) levels. Because gene expression defects resulting from ribosome deficiency have not yet been experimentally defined, we systematically probed mRNA, translation, and protein signatures that were either unlinked from or linked to cellular growth rate in RP-deficient yeast cells. Ribosome deficiency was associated with altered translation of gene subclasses, and profound general secondary effects of RP loss on the spectrum of cellular mRNAs were seen. Among these effects, growth-defective 60S mutants increased synthesis of proteins involved in proteasome-mediated degradation, whereas 40S mutants accumulated mature 60S subunits and increased translation of ribosome biogenesis genes. These distinct signatures of protein synthesis suggest intriguing and currently mysterious differences in the cellular consequences of deficiency for small and large ribosomal subunits.

摘要

核糖体是一种介导翻译的保守分子机器,其水平与细胞生长速率密切相关。在人类中,核糖体病是与细胞类型特异性病理和核糖体蛋白 (RP) 水平降低相关的疾病。由于由于核糖体缺乏导致的基因表达缺陷尚未通过实验来定义,因此我们系统地探测了与细胞生长速率无关或相关的 mRNA、翻译和蛋白质特征在 RP 缺陷酵母细胞中。核糖体缺乏与基因亚类翻译的改变有关,并且在 RP 缺失对细胞 mRNA 谱的广泛的二次影响也很明显。其中,生长缺陷的 60S 突变体增加了参与蛋白酶体介导的降解的蛋白质的合成,而 40S 突变体则积累成熟的 60S 亚基并增加核糖体生物发生基因的翻译。这些不同的蛋白质合成特征表明,小核糖体亚基和大核糖体亚基的缺乏对细胞的影响存在有趣且目前神秘的差异。

相似文献

1
Small and Large Ribosomal Subunit Deficiencies Lead to Distinct Gene Expression Signatures that Reflect Cellular Growth Rate.
Mol Cell. 2019 Jan 3;73(1):36-47.e10. doi: 10.1016/j.molcel.2018.10.032. Epub 2018 Nov 29.
2
Why Dom34 stimulates growth of cells with defects of 40S ribosomal subunit biosynthesis.
Mol Cell Biol. 2010 Dec;30(23):5562-71. doi: 10.1128/MCB.00618-10. Epub 2010 Sep 27.
4
The small and large ribosomal subunits depend on each other for stability and accumulation.
Life Sci Alliance. 2019 Mar 5;2(2). doi: 10.26508/lsa.201800150. Print 2019 Apr.
7
Immature small ribosomal subunits can engage in translation initiation in Saccharomyces cerevisiae.
EMBO J. 2010 Jan 6;29(1):80-92. doi: 10.1038/emboj.2009.307. Epub 2009 Nov 5.
8
Rrp5 establishes a checkpoint for 60S assembly during 40S maturation.
RNA. 2019 Sep;25(9):1164-1176. doi: 10.1261/rna.071225.119. Epub 2019 Jun 19.
9
RNA mimicry by the fap7 adenylate kinase in ribosome biogenesis.
PLoS Biol. 2014 May 13;12(5):e1001860. doi: 10.1371/journal.pbio.1001860. eCollection 2014 May.
10
Final pre-40S maturation depends on the functional integrity of the 60S subunit ribosomal protein L3.
PLoS Genet. 2014 Mar 6;10(3):e1004205. doi: 10.1371/journal.pgen.1004205. eCollection 2014 Mar.

引用本文的文献

1
Deubiquitinase Ubp5 is essential for pulmonary immune evasion and hematogenous dissemination of .
Mycology. 2025 Feb 3;16(3):1373-1385. doi: 10.1080/21501203.2025.2453739. eCollection 2025.
3
Mechanisms of ribosomopathy and phase separation-related ribosomopathy.
J Zhejiang Univ Sci B. 2025 Jun 2;26(6):503-526. doi: 10.1631/jzus.B2300904.
4
Beyond the ORF: Paralog-specific regulation of RPS7/eS7 mRNAs via 3'-UTRs and promoter sequences.
PLoS One. 2025 May 30;20(5):e0324525. doi: 10.1371/journal.pone.0324525. eCollection 2025.
6
Specialized ribosomes: integrating new insights and current challenges.
Philos Trans R Soc Lond B Biol Sci. 2025 Mar 6;380(1921):20230377. doi: 10.1098/rstb.2023.0377.
7
RNF10 and RIOK3 facilitate 40S ribosomal subunit degradation upon 60S biogenesis disruption or amino acid starvation.
Cell Rep. 2025 Mar 25;44(3):115371. doi: 10.1016/j.celrep.2025.115371. Epub 2025 Feb 28.
8
Cell Storage Conditions Impact Single-Cell Proteomic Landscapes.
J Proteome Res. 2025 Apr 4;24(4):1586-1595. doi: 10.1021/acs.jproteome.4c00632. Epub 2025 Jan 24.

本文引用的文献

2
Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis.
Cell. 2018 Mar 22;173(1):90-103.e19. doi: 10.1016/j.cell.2018.02.036. Epub 2018 Mar 15.
3
Pervasive, Coordinated Protein-Level Changes Driven by Transcript Isoform Switching during Meiosis.
Cell. 2018 Feb 22;172(5):910-923.e16. doi: 10.1016/j.cell.2018.01.035.
4
Ribosomopathies: There's strength in numbers.
Science. 2017 Nov 3;358(6363). doi: 10.1126/science.aan2755.
6
Ribosomes are optimized for autocatalytic production.
Nature. 2017 Jul 19;547(7663):293-297. doi: 10.1038/nature22998.
8
Ribosomal proteins produced in excess are degraded by the ubiquitin-proteasome system.
Mol Biol Cell. 2016 Sep 1;27(17):2642-52. doi: 10.1091/mbc.E16-05-0290. Epub 2016 Jul 6.
9
Pathways to Specialized Ribosomes: The Brussels Lecture.
J Mol Biol. 2016 May 22;428(10 Pt B):2186-94. doi: 10.1016/j.jmb.2015.12.021. Epub 2016 Jan 4.
10
The Cost of Protein Production.
Cell Rep. 2016 Jan 5;14(1):22-31. doi: 10.1016/j.celrep.2015.12.015. Epub 2015 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验