Suppr超能文献

新的肺功能指标用于检测轻度气流阻塞。

New Spirometry Indices for Detecting Mild Airflow Obstruction.

机构信息

Division of Pulmonary, Allergy and Critical Care Medicine and Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.

UAB Lung Imaging Core, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.

出版信息

Sci Rep. 2018 Nov 30;8(1):17484. doi: 10.1038/s41598-018-35930-2.

Abstract

The diagnosis of chronic obstructive pulmonary disease (COPD) relies on demonstration of airflow obstruction. Traditional spirometric indices miss a number of subjects with respiratory symptoms or structural lung disease on imaging. We hypothesized that utilizing all data points on the expiratory spirometry curves to assess their shape will improve detection of mild airflow obstruction and structural lung disease. We analyzed spirometry data of 8307 participants enrolled in the COPDGene study, and derived metrics of airflow obstruction based on the shape on the volume-time (Parameter D), and flow-volume curves (Transition Point and Transition Distance). We tested associations of these parameters with CT measures of lung disease, respiratory morbidity, and mortality using regression analyses. There were significant correlations between FEV/FVC with Parameter D (r = -0.83; p < 0.001), Transition Point (r = 0.69; p < 0.001), and Transition Distance (r = 0.50; p < 0.001). All metrics had significant associations with emphysema, small airway disease, dyspnea, and respiratory-quality of life (p < 0.001). The highest quartile for Parameter D was independently associated with all-cause mortality (adjusted HR 3.22,95% CI 2.42-4.27; p < 0.001) but a substantial number of participants in the highest quartile were categorized as GOLD 0 and 1 by traditional criteria (1.8% and 33.7%). Parameter D identified an additional 9.5% of participants with mild or non-recognized disease as abnormal with greater burden of structural lung disease compared with controls. The data points on the flow-volume and volume-time curves can be used to derive indices of airflow obstruction that identify additional subjects with disease who are deemed to be normal by traditional criteria.

摘要

慢性阻塞性肺疾病(COPD)的诊断依赖于气流受限的证明。传统的肺量计指数错过了许多有呼吸症状或影像学结构性肺病的患者。我们假设利用呼气肺量计曲线的所有数据点来评估其形状将改善对轻度气流受限和结构性肺病的检测。我们分析了 COPDGene 研究中 8307 名参与者的肺量计数据,并根据体积-时间(参数 D)和流量-容积曲线(转换点和转换距离)上的形状得出气流受限的度量。我们使用回归分析测试了这些参数与 CT 测量的肺部疾病、呼吸发病率和死亡率之间的关联。FEV/FVC 与参数 D(r = -0.83;p < 0.001)、转换点(r = 0.69;p < 0.001)和转换距离(r = 0.50;p < 0.001)之间存在显著相关性。所有指标均与肺气肿、小气道疾病、呼吸困难和呼吸质量生活(p < 0.001)显著相关。参数 D 的最高四分位数与全因死亡率独立相关(调整后的 HR 3.22,95%CI 2.42-4.27;p < 0.001),但相当一部分最高四分位数的患者按传统标准分类为 GOLD 0 和 1(1.8%和 33.7%)。与对照组相比,参数 D 还确定了另外 9.5%的轻度或未被识别的疾病患者存在结构性肺病负担更重的异常情况。流量-容积和体积-时间曲线的数据点可用于得出气流受限的指数,这些指数可识别出按传统标准被认为正常的患者中患有疾病的额外患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00b0/6269456/ed70c9063428/41598_2018_35930_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验