Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
Quantitative Sciences Unit, Stanford University, Palo Alto, California.
Stat Med. 2019 Apr 15;38(8):1336-1342. doi: 10.1002/sim.8057. Epub 2018 Dec 4.
We provide two simple metrics that could be reported routinely in random-effects meta-analyses to convey evidence strength for scientifically meaningful effects under effect heterogeneity (ie, a nonzero estimated variance of the true effect distribution). First, given a chosen threshold of meaningful effect size, meta-analyses could report the estimated proportion of true effect sizes above this threshold. Second, meta-analyses could estimate the proportion of effect sizes below a second, possibly symmetric, threshold in the opposite direction from the estimated mean. These metrics could help identify if (1) there are few effects of scientifically meaningful size despite a "statistically significant" pooled point estimate, (2) there are some large effects despite an apparently null point estimate, or (3) strong effects in the direction opposite the pooled estimate also regularly occur (and thus, potential effect modifiers should be examined). These metrics should be presented with confidence intervals, which can be obtained analytically or, under weaker assumptions, using bias-corrected and accelerated bootstrapping. Additionally, these metrics inform relative comparison of evidence strength across related meta-analyses. We illustrate with applied examples and provide an R function to compute the metrics and confidence intervals.
我们提供了两个简单的指标,可以在随机效应荟萃分析中定期报告,以传达在效应异质性下(即真实效应分布的估计方差不为零)具有科学意义的效应的证据强度。首先,给定有意义的效应大小的选择阈值,荟萃分析可以报告超过该阈值的真实效应大小的估计比例。其次,荟萃分析可以估计与估计平均值相反方向的第二个、可能对称的阈值以下的效应大小比例。这些指标可以帮助确定是否存在以下情况:(1)尽管有“统计学上显著”的汇总点估计,但仍有少数具有科学意义的效应大小;(2)尽管点估计显然为零,但仍有一些大效应;或(3)与汇总估计方向相反的强烈效应也经常发生(因此,应该检查潜在的效应修饰剂)。这些指标应该与置信区间一起呈现,置信区间可以通过分析或在较弱的假设下使用偏倚校正和加速引导来获得。此外,这些指标可以告知跨相关荟萃分析的证据强度的相对比较。我们通过应用实例进行说明,并提供一个 R 函数来计算这些指标和置信区间。