Suppr超能文献

基于基因组数据的精神分裂症预测建模:多基因风险评分与核支持向量机方法的比较。

Predictive modeling of schizophrenia from genomic data: Comparison of polygenic risk score with kernel support vector machines approach.

机构信息

Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom.

School of Mathematics, Cardiff University, Cardiff, United Kingdom.

出版信息

Am J Med Genet B Neuropsychiatr Genet. 2019 Jan;180(1):80-85. doi: 10.1002/ajmg.b.32705. Epub 2018 Dec 4.

Abstract

A major controversy in psychiatric genetics is whether nonadditive genetic interaction effects contribute to the risk of highly polygenic disorders. We applied a support vector machines (SVMs) approach, which is capable of building linear and nonlinear models using kernel methods, to classify cases from controls in a large schizophrenia case-control sample of 11,853 subjects (5,554 cases and 6,299 controls) and compared its prediction accuracy with the polygenic risk score (PRS) approach. We also investigated whether SVMs are a suitable approach to detecting nonlinear genetic effects, that is, interactions. We found that PRS provided more accurate case/control classification than either linear or nonlinear SVMs, and give a tentative explanation why PRS outperforms both multivariate regression and linear kernel SVMs. In addition, we observe that nonlinear kernel SVMs showed higher classification accuracy than linear SVMs when a large number of SNPs are entered into the model. We conclude that SVMs are a potential tool for assessing the presence of interactions, prior to searching for them explicitly.

摘要

精神疾病遗传学中的一个主要争议是,非加性遗传相互作用是否会导致高度多基因疾病的风险增加。我们应用支持向量机(SVM)方法,该方法能够使用核方法构建线性和非线性模型,对来自 11853 名受试者(5554 例病例和 6299 例对照)的大精神分裂症病例对照样本中的病例进行分类,并将其预测准确性与多基因风险评分(PRS)方法进行比较。我们还研究了 SVM 是否是检测非线性遗传效应(即相互作用)的合适方法。我们发现,PRS 提供了比线性或非线性 SVM 更准确的病例/对照分类,并对为什么 PRS 优于多元回归和线性核 SVM 给出了一个初步解释。此外,我们观察到,当大量 SNP 输入到模型中时,非线性核 SVM 的分类准确性高于线性 SVM。我们的结论是,在明确搜索相互作用之前,SVM 是评估相互作用存在的潜在工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c010/6492016/e166760d42fd/AJMG-180-80-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验