Suppr超能文献

基于 2016 年修订版《世界卫生组织脑肿瘤分类》的融合 11C-MET PET/MRI 联合“机器学习”在脑胶质瘤诊断中的应用。

Hybrid 11C-MET PET/MRI Combined With "Machine Learning" in Glioma Diagnosis According to the Revised Glioma WHO Classification 2016.

机构信息

Institute of Diagnostic and Interventional Radiology and Neuroradiology, Departments of.

Neuropathology.

出版信息

Clin Nucl Med. 2019 Mar;44(3):214-220. doi: 10.1097/RLU.0000000000002398.

Abstract

PURPOSE

With the advent of the revised WHO classification from 2016, molecular features, including isocitrate dehydrogenase (IDH) mutation have become important in glioma subtyping. This pilot trial analyzed the potential for C-methionine (MET) PET/MRI in classifying glioma according to the revised WHO classification using a machine learning model.

METHODS

Patients with newly diagnosed WHO grade II-IV glioma underwent preoperative MET-PET/MRI imaging. Patients were retrospectively divided into four groups: IDH wild-type glioblastoma (GBM), IDH wild-type grade II/III glioma (GII/III-IDHwt), IDH mutant grade II/III glioma with codeletion of 1p19q (GII/III-IDHmut1p19qcod) or without 1p19q-codeletion (GII/III-IDHmut1p19qnc). Within each group, the maximum tumor-to-brain-ratio (TBRmax) of MET-uptake was calculated. To gain generalizable implications from our data, we made use of a machine learning algorithm based on a development and validation subcohort. A support vector machine model was fit to the development subcohort and evaluated on the validation subcohort. Receiver operating characteristic (ROC) analysis served as metric to assess model performance.

RESULTS

Of a total of 259 patients, 39 patients met the inclusion criteria. TBRmax was highest in the GBM cohort (TBRmax 3.83 ± 1.30) and significantly higher (P = 0.004) compared to GII/III-IDHmut1p19qnc group, where TBRmax was lowest (TBRmax 2.05 ± 0.94). ROC analysis showed poor AUC for glioma subtyping (AUC 0.62) and high AUC of 0.79 for predicting IDH status. In the GII/III-IDHmut1p19qcod group, TBR values were slightly higher than in the IDHmut1p19qnc group.

CONCLUSIONS

MET-PET/MRI imaging in pre-operatively classifying glioma entities appears useful for the assessment of IDH status. However, a larger trial is needed prior to translation into the clinical routine.

摘要

目的

随着 2016 年修订版世界卫生组织(WHO)分类的出现,包括异柠檬酸脱氢酶(IDH)突变在内的分子特征已成为胶质瘤亚型分类的重要依据。本试验采用机器学习模型分析了 C-蛋氨酸(MET)PET/MRI 在根据修订后的 WHO 分类对胶质瘤进行分类的潜力。

方法

新诊断为 WHO 分级 II-IV 级胶质瘤的患者接受术前 MET-PET/MRI 成像。患者回顾性分为四组:IDH 野生型胶质母细胞瘤(GBM)、IDH 野生型 II/III 级胶质瘤(GII/III-IDHwt)、IDH 突变型伴 1p19q 缺失的 II/III 级胶质瘤(GII/III-IDHmut1p19qcod)或不伴 1p19q 缺失的 II/III 级胶质瘤(GII/III-IDHmut1p19qnc)。在每组内,计算 MET 摄取的最大肿瘤与脑比值(TBRmax)。为了从我们的数据中获得可推广的结论,我们使用了一种基于开发和验证子队列的机器学习算法。支持向量机模型拟合到开发子队列,并在验证子队列上进行评估。接收者操作特征(ROC)分析作为评估模型性能的指标。

结果

在总共 259 名患者中,有 39 名患者符合纳入标准。GBM 组的 TBRmax 最高(TBRmax 3.83 ± 1.30),明显高于 TBRmax 最低的 GII/III-IDHmut1p19qnc 组(TBRmax 2.05 ± 0.94)(P = 0.004)。ROC 分析显示,胶质瘤亚类的 AUC 较差(AUC 0.62),而 IDH 状态的 AUC 为 0.79。在 GII/III-IDHmut1p19qcod 组中,TBR 值略高于 IDHmut1p19qnc 组。

结论

术前对胶质瘤实体进行 MET-PET/MRI 成像似乎有助于评估 IDH 状态。然而,在将其转化为临床常规之前,还需要进行更大规模的试验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验