Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.
West German Cancer Center (WTZ), German Cancer Consortium (DKTK), University Hospital Essen, University Duisburg-Essen, Partner Site University Hospital Essen, Essen, Germany.
J Neurooncol. 2021 Apr;152(2):325-332. doi: 10.1007/s11060-021-03701-1. Epub 2021 Jan 27.
This study aimed to test the diagnostic significance of FET-PET imaging combined with machine learning for the differentiation between multiple sclerosis (MS) and glioma II°-IV°.
Our database was screened for patients in whom FET-PET imaging was performed for the diagnostic workup of newly diagnosed lesions evident on MRI and suggestive of glioma. Among those, we identified patients with histologically confirmed glioma II°-IV°, and those who later turned out to have MS. For each group, tumor-to-brain ratio (TBR) derived features of FET were determined. A support vector machine (SVM) based machine learning algorithm was constructed to enhance classification ability, and Receiver Operating Characteristic (ROC) analysis with area under the curve (AUC) metric served to ascertain model performance.
A total of 41 patients met selection criteria, including seven patients with MS and 34 patients with glioma. TBR values were significantly higher in the glioma group (TBRmax glioma vs. MS: p = 0.002; TBRmean glioma vs. MS: p = 0.014). In a subgroup analysis, TBR values significantly differentiated between MS and glioblastoma (TBRmax glioblastoma vs. MS: p = 0.0003, TBRmean glioblastoma vs. MS: p = 0.0003) and between MS and oligodendroglioma (ODG) (TBRmax ODG vs. MS: p = 0.003; TBRmean ODG vs. MS: p = 0.01). The ability to differentiate between MS and glioma II°-IV° increased from 0.79 using standard TBR analysis to 0.94 using a SVM based machine learning algorithm.
FET-PET imaging may help differentiate MS from glioma II°-IV° and SVM based machine learning approaches can enhance classification performance.
本研究旨在测试 FET-PET 成像结合机器学习对多发性硬化症(MS)和 II°-IV 级胶质瘤的鉴别诊断意义。
我们的数据库筛选了接受 FET-PET 成像以诊断 MRI 显示的新发病变且疑似胶质瘤的患者。在这些患者中,我们确定了组织学证实的 II°-IV 级胶质瘤患者,以及后来确诊为 MS 的患者。对于每个组,确定 FET 的肿瘤与脑比(TBR)衍生特征。构建了基于支持向量机(SVM)的机器学习算法以增强分类能力,并使用 ROC 分析和曲线下面积(AUC)度量来确定模型性能。
共有 41 名患者符合入选标准,包括 7 名 MS 患者和 34 名胶质瘤患者。胶质瘤组的 TBR 值明显更高(TBRmax 胶质瘤与 MS:p=0.002;TBRmean 胶质瘤与 MS:p=0.014)。在亚组分析中,TBR 值显著区分了 MS 与胶质母细胞瘤(TBRmax 胶质母细胞瘤与 MS:p=0.0003,TBRmean 胶质母细胞瘤与 MS:p=0.0003)和 MS 与少突胶质细胞瘤(ODG)(TBRmax ODG 与 MS:p=0.003;TBRmean ODG 与 MS:p=0.01)。使用标准 TBR 分析区分 MS 和胶质瘤 II°-IV°的能力从 0.79 增加到使用基于 SVM 的机器学习算法的 0.94。
FET-PET 成像可能有助于区分 MS 和胶质瘤 II°-IV°,而基于 SVM 的机器学习方法可以提高分类性能。