UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA.
Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA.
Cancer Imaging. 2021 Mar 10;21(1):27. doi: 10.1186/s40644-021-00396-5.
The purpose of this study was to develop a voxel-wise clustering method of multiparametric magnetic resonance imaging (MRI) and 3,4-dihydroxy-6-[F]-fluoro-L-phenylalanine (FDOPA) positron emission tomography (PET) images using an unsupervised, two-level clustering approach followed by support vector machine in order to classify the isocitrate dehydrogenase (IDH) status of gliomas.
Sixty-two treatment-naïve glioma patients who underwent FDOPA PET and MRI were retrospectively included. Contrast enhanced T1-weighted images, T2-weighted images, fluid-attenuated inversion recovery images, apparent diffusion coefficient maps, and relative cerebral blood volume maps, and FDOPA PET images were used for voxel-wise feature extraction. An unsupervised two-level clustering approach, including a self-organizing map followed by the K-means algorithm was used, and each class label was applied to the original images. The logarithmic ratio of labels in each class within tumor regions was applied to a support vector machine to differentiate IDH mutation status. The area under the curve (AUC) of receiver operating characteristic curves, accuracy, and F1-socore were calculated and used as metrics for performance.
The associations of multiparametric imaging values in each cluster were successfully visualized. Multiparametric images with 16-class clustering revealed the highest classification performance to differentiate IDH status with the AUC, accuracy, and F1-score of 0.81, 0.76, and 0.76, respectively.
Machine learning using an unsupervised two-level clustering approach followed by a support vector machine classified the IDH mutation status of gliomas, and visualized voxel-wise features from multiparametric MRI and FDOPA PET images. Unsupervised clustered features may improve the understanding of prioritizing multiparametric imaging for classifying IDH status.
本研究旨在开发一种基于无监督、两级聚类方法和支持向量机的多参数磁共振成像(MRI)和 3,4-二羟基-6-[F]-氟-L-苯丙氨酸(FDOPA)正电子发射断层扫描(PET)图像的体素聚类方法,以分类脑胶质瘤的异柠檬酸脱氢酶(IDH)状态。
回顾性纳入 62 例未经治疗的脑胶质瘤患者,他们接受了 FDOPA PET 和 MRI 检查。使用对比增强 T1 加权图像、T2 加权图像、液体衰减反转恢复图像、表观扩散系数图和相对脑血容量图以及 FDOPA PET 图像进行体素特征提取。采用无监督的两级聚类方法,包括自组织映射和 K 均值算法,每个类标签应用于原始图像。将每个类中肿瘤区域内标签的对数比应用于支持向量机以区分 IDH 突变状态。计算受试者工作特征曲线下面积(AUC)、准确性和 F1 评分,并将其用作性能指标。
成功可视化了每个聚类中多参数成像值的相关性。16 类聚类的多参数图像显示出最高的分类性能,AUC、准确性和 F1 评分分别为 0.81、0.76 和 0.76,可用于区分 IDH 状态。
使用无监督的两级聚类方法和支持向量机的机器学习方法对脑胶质瘤的 IDH 突变状态进行分类,并可视化多参数 MRI 和 FDOPA PET 图像的体素特征。无监督聚类特征可能有助于更好地理解优先考虑多参数成像以分类 IDH 状态。