Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea.
Nanoscale. 2018 Dec 13;10(48):23175-23181. doi: 10.1039/c8nr07728b.
Coupling of the electron orbital motion and spin, i.e., spin-orbit coupling (SOC) leads to nontrivial changes in energy-level structures, giving rise to various spectroscopies and applications. The SOC in solids generates energy-band inversion or splitting under zero or weak magnetic fields, which is required for topological phases or Majorana fermions. Here, we examined the interplay between the Zeeman splitting and SOC by performing the transport spectroscopy of Landau levels (LLs) in indium arsenide nanowires under a strong magnetic field. We observed the anomalous Zeeman splitting of LLs, which depends on the quantum number of LLs as well as the electron spin. We considered that this observation was attributed to the interplay between the Zeeman splitting and the SOC. Our findings suggest an approach of generating spin-resolved chiral electron transport in nanowires.
电子轨道运动和自旋的耦合,即自旋轨道耦合(SOC),导致能级结构发生有趣的变化,从而产生各种光谱学和应用。在零磁场或弱磁场下,固体中的 SOC 会产生能带反转或劈裂,这是拓扑相或马约拉纳费米子所必需的。在这里,我们通过在强磁场下对砷化铟纳米线中的 Landau 能级(LLs)进行输运谱研究,考察了塞曼劈裂和 SOC 之间的相互作用。我们观察到了 LLs 的反常塞曼劈裂,它取决于 LLs 的量子数以及电子自旋。我们认为这一观察结果归因于塞曼劈裂和 SOC 之间的相互作用。我们的研究结果表明,在纳米线中产生自旋分辨手性电子输运的一种方法。