Zeng Jinwei, Darvishzadeh-Varcheie Mahsa, Albooyeh Mohammad, Rajaei Mohsen, Kamandi Mohammad, Veysi Mehdi, Potma Eric O, Capolino Filippo, Wickramasinghe H K
ACS Nano. 2018 Dec 26;12(12):12159-12168. doi: 10.1021/acsnano.8b05778. Epub 2018 Dec 10.
Recent work has shown that optical magnetism, generally considered a challenging light-matter interaction, can be significant at the nanoscale. In particular, the dielectric nanostructures that support magnetic Mie resonances are low-loss and versatile optical magnetic elements that can effectively manipulate the magnetic field of light. However, the narrow magnetic resonance band of dielectric Mie resonators is often overshadowed by the electric response, which prohibits the use of such nanoresonators as efficient magnetic nanoantennas. Here, we design and fabricate a silicon (Si) truncated cone magnetic Mie resonator at visible frequencies and excite the magnetic mode exclusively by a tightly focused azimuthally polarized beam. We use photoinduced force microscopy to experimentally characterize the local electric near-field distribution in the immediate vicinity of the Si truncated cone at the nanoscale and then create an analytical model of such structure that exhibits a matching electric field distribution. We use this model to interpret the PiFM measurement that visualizes the electric near-field profile of the Si truncated cone with a superior signal-to-noise ratio and infer the magnetic response of the Si truncated cone at the beam singularity. Finally, we perform a multipole analysis to quantitatively present the dominance of the magnetic dipole moment contribution compared to other multipole contributions into the total scattered power of the proposed structure. This work demonstrates the excellent efficiency and simplicity of our method of using Si truncated cone structure under APB illumination compared to other approaches to achieve dominant magnetic excitations.
最近的研究表明,光学磁性,通常被认为是一种具有挑战性的光与物质相互作用,在纳米尺度上可能具有重要意义。特别是,支持磁米氏共振的介电纳米结构是低损耗且通用的光学磁性元件,能够有效操纵光的磁场。然而,介电米氏谐振器狭窄的磁共振带常常被电响应所掩盖,这使得此类纳米谐振器无法用作高效的磁性纳米天线。在此,我们设计并制造了一种在可见光频率下的硅(Si)截顶圆锥磁米氏谐振器,并通过紧聚焦的方位角偏振光束专门激发其磁模式。我们使用光致力显微镜在纳米尺度上实验表征硅截顶圆锥紧邻区域的局部电近场分布,然后创建了一个具有匹配电场分布的此类结构的分析模型。我们使用该模型来解释光致力显微镜测量结果,该测量以卓越的信噪比可视化了硅截顶圆锥的电近场分布,并推断出光束奇点处硅截顶圆锥的磁响应。最后,我们进行多极分析,以定量展示与其他多极贡献相比,磁偶极矩贡献在所提出结构的总散射功率中的主导地位。这项工作证明了与其他实现主导磁激发的方法相比,我们在方位角偏振光束照明下使用硅截顶圆锥结构的方法具有出色的效率和简便性。