Suppr超能文献

CT重建中探测器滞后和机架运动的高保真建模

High-Fidelity Modeling of Detector Lag and Gantry Motion in CT Reconstruction.

作者信息

Tilley Steven, Sisniega Alejandro, Siewerdsen Jeffrey H, Webster Stayman J

机构信息

Department of Biomedical Engineering, Johns Hopkins University.

出版信息

Conf Proc Int Conf Image Form Xray Comput Tomogr. 2018 May;2018:318-322.

Abstract

Detector lag and gantry motion during x-ray exposure and integration both result in azimuthal blurring in CT reconstructions. These effects can degrade image quality both for high-resolution features as well as low-contrast details. In this work we consider a forward model for model-based iterative reconstruction (MBIR) that is sufficiently general to accommodate both of these physical effects. We integrate this forward model in a penalized, weighted, nonlinear least-square style objective function for joint reconstruction and correction of these blur effects. We show that modeling detector lag can reduce/remove the characteristic lag artifacts in head imaging in both a simulation study and physical experiments. Similarly, we show that azimuthal blur ordinarily introduced by gantry motion can be mitigated with proper reconstruction models. In particular, we find the largest image quality improvement at the periphery of the field-of-view where gantry motion artifacts are most pronounced. These experiments illustrate the generality of the underlying forward model, suggesting the potential application in modeling a number of physical effects that are traditionally ignored or mitigated through pre-corrections to measurement data.

摘要

在X射线曝光和积分过程中,探测器滞后和机架运动会导致CT重建中的方位模糊。这些效应会降低高分辨率特征以及低对比度细节的图像质量。在这项工作中,我们考虑了一种基于模型的迭代重建(MBIR)的前向模型,该模型具有足够的通用性,能够兼顾这两种物理效应。我们将此前向模型集成到一个惩罚加权非线性最小二乘风格的目标函数中,用于联合重建和校正这些模糊效应。我们表明,在模拟研究和物理实验中,对探测器滞后进行建模都可以减少/消除头部成像中的特征性滞后伪影。同样,我们表明,通过适当的重建模型可以减轻通常由机架运动引入的方位模糊。特别是,我们发现在视野边缘处图像质量改善最大,因为那里的机架运动伪影最为明显。这些实验说明了基础前向模型的通用性,表明其在对许多传统上被忽略或通过对测量数据进行预校正来减轻的物理效应进行建模方面具有潜在应用。

相似文献

1
High-Fidelity Modeling of Detector Lag and Gantry Motion in CT Reconstruction.
Conf Proc Int Conf Image Form Xray Comput Tomogr. 2018 May;2018:318-322.
2
Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms.
Phys Med Biol. 2015 Oct 7;60(19):7437-60. doi: 10.1088/0031-9155/60/19/7437. Epub 2015 Sep 9.
3
CT Reconstruction using Nonlinear Diffusion Posterior Sampling with Detector Blur Modeling.
Conf Proc Int Conf Image Form Xray Comput Tomogr. 2024 Aug;2024:30-33.
4
Iterative CT Reconstruction using Models of Source and Detector Blur and Correlated Noise.
Conf Proc Int Conf Image Form Xray Comput Tomogr. 2014;2014:363-367.
6
Simultaneous deblurring and iterative reconstruction of CBCT for image guided brain radiosurgery.
Phys Med Biol. 2017 Apr 7;62(7):2521-2541. doi: 10.1088/1361-6560/aa5ed2. Epub 2017 Mar 1.
7
Gantry rotational motion-induced blur in cone-beam computed tomography.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10573. doi: 10.1117/12.2293580. Epub 2018 Mar 9.
8
Effect of source blur on digital breast tomosynthesis reconstruction.
Med Phys. 2019 Dec;46(12):5572-5592. doi: 10.1002/mp.13801. Epub 2019 Oct 20.
10
Multiresolution iterative reconstruction in high-resolution extremity cone-beam CT.
Phys Med Biol. 2016 Oct 21;61(20):7263-7281. doi: 10.1088/0031-9155/61/20/7263. Epub 2016 Oct 3.

引用本文的文献

本文引用的文献

1
Penalized-Likelihood Reconstruction With High-Fidelity Measurement Models for High-Resolution Cone-Beam Imaging.
IEEE Trans Med Imaging. 2018 Apr;37(4):988-999. doi: 10.1109/TMI.2017.2779406.
4
High-fidelity artifact correction for cone-beam CT imaging of the brain.
Phys Med Biol. 2015 Feb 21;60(4):1415-39. doi: 10.1088/0031-9155/60/4/1415. Epub 2015 Jan 22.
5
Combining ordered subsets and momentum for accelerated X-ray CT image reconstruction.
IEEE Trans Med Imaging. 2015 Jan;34(1):167-78. doi: 10.1109/TMI.2014.2350962. Epub 2014 Aug 22.
6
Modelling the physics in the iterative reconstruction for transmission computed tomography.
Phys Med Biol. 2013 Jun 21;58(12):R63-96. doi: 10.1088/0031-9155/58/12/R63. Epub 2013 Jun 5.
7
A nonlinear lag correction algorithm for a-Si flat-panel x-ray detectors.
Med Phys. 2012 Oct;39(10):6035-47. doi: 10.1118/1.4752087.
10
3D forward and back-projection for X-ray CT using separable footprints.
IEEE Trans Med Imaging. 2010 Nov;29(11):1839-50. doi: 10.1109/TMI.2010.2050898. Epub 2010 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验