文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

结合有序子集和动量用于加速X射线计算机断层扫描图像重建

Combining ordered subsets and momentum for accelerated X-ray CT image reconstruction.

作者信息

Kim Donghwan, Ramani Sathish, Fessler Jeffrey A

出版信息

IEEE Trans Med Imaging. 2015 Jan;34(1):167-78. doi: 10.1109/TMI.2014.2350962. Epub 2014 Aug 22.


DOI:10.1109/TMI.2014.2350962
PMID:25163058
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4280323/
Abstract

Statistical X-ray computed tomography (CT) reconstruction can improve image quality from reduced dose scans, but requires very long computation time. Ordered subsets (OS) methods have been widely used for research in X-ray CT statistical image reconstruction (and are used in clinical PET and SPECT reconstruction). In particular, OS methods based on separable quadratic surrogates (OS-SQS) are massively parallelizable and are well suited to modern computing architectures, but the number of iterations required for convergence should be reduced for better practical use. This paper introduces OS-SQS-momentum algorithms that combine Nesterov's momentum techniques with OS-SQS methods, greatly improving convergence speed in early iterations. If the number of subsets is too large, the OS-SQS-momentum methods can be unstable, so we propose diminishing step sizes that stabilize the method while preserving the very fast convergence behavior. Experiments with simulated and real 3D CT scan data illustrate the performance of the proposed algorithms.

摘要

统计X射线计算机断层扫描(CT)重建可以从低剂量扫描中提高图像质量,但需要很长的计算时间。有序子集(OS)方法已广泛用于X射线CT统计图像重建研究(并用于临床PET和SPECT重建)。特别是,基于可分离二次替代函数的OS方法(OS-SQS)具有大规模并行性,非常适合现代计算架构,但为了更好地实际应用,应减少收敛所需的迭代次数。本文介绍了将涅斯捷罗夫动量技术与OS-SQS方法相结合的OS-SQS动量算法,极大地提高了早期迭代的收敛速度。如果子集数量过大,OS-SQS动量方法可能不稳定,因此我们提出了递减步长,在保持非常快的收敛行为的同时稳定该方法。对模拟和真实3D CT扫描数据的实验说明了所提出算法的性能。

相似文献

[1]
Combining ordered subsets and momentum for accelerated X-ray CT image reconstruction.

IEEE Trans Med Imaging. 2015-1

[2]
Time of flight PET reconstruction using nonuniform update for regional recovery uniformity.

Med Phys. 2019-1-4

[3]
Accelerated statistical reconstruction for C-arm cone-beam CT using Nesterov's method.

Med Phys. 2015-5

[4]
Accelerating ordered subsets image reconstruction for X-ray CT using spatially nonuniform optimization transfer.

IEEE Trans Med Imaging. 2013-6-7

[5]
Low-dose CT reconstruction using spatially encoded nonlocal penalty.

Med Phys. 2017-10

[6]
Relaxed Linearized Algorithms for Faster X-Ray CT Image Reconstruction.

IEEE Trans Med Imaging. 2016-4

[7]
Fast X-ray CT image reconstruction using a linearized augmented Lagrangian method with ordered subsets.

IEEE Trans Med Imaging. 2015-2

[8]
Accelerated 3D image reconstruction with a morphological pyramid and noise-power convergence criterion.

Phys Med Biol. 2021-2-20

[9]
An ordered-subsets proximal preconditioned gradient algorithm for edge-preserving PET image reconstruction.

Med Phys. 2013-5

[10]
Comparison of five one-step reconstruction algorithms for spectral CT.

Phys Med Biol. 2018-11-22

引用本文的文献

[1]
ProxNF: Neural Field Proximal Training for High-Resolution 4D Dynamic Image Reconstruction.

IEEE Trans Comput Imaging. 2024

[2]
Simulated low-dose multi-detector computed tomography: spatial effects on surrogate parameters of bone strength at the proximal femur.

Osteoporos Int. 2025-5

[3]
The effects of distance between the imaging isocenter and brain center on the image quality of cone-beam computed tomography for brain stereotactic irradiation.

Phys Eng Sci Med. 2024-6

[4]
Artifact suppression for breast specimen imaging in micro CBCT using deep learning.

BMC Med Imaging. 2024-2-6

[5]
Spatiotemporal image reconstruction to enable high-frame-rate dynamic photoacoustic tomography with rotating-gantry volumetric imagers.

J Biomed Opt. 2024-1

[6]
Truncation effect reduction for fast iterative reconstruction in cone-beam CT.

BMC Med Imaging. 2022-9-5

[7]
Noise-robust phase-space deconvolution for light-field microscopy.

J Biomed Opt. 2022-7

[8]
A Fast Convergent Ordered-Subsets Algorithm With Subiteration-Dependent Preconditioners for PET Image Reconstruction.

IEEE Trans Med Imaging. 2022-11

[9]
Convex optimization algorithms in medical image reconstruction-in the age of AI.

Phys Med Biol. 2022-3-23

[10]
Convergence criterion for MBIR based on the local noise-power spectrum: Theory and implementation in a framework for accelerated 3D image reconstruction with a morphological pyramid.

Proc SPIE Int Soc Opt Eng. 2019-6

本文引用的文献

[1]
On the Convergence of the LMS Algorithm with Adaptive Learning Rate for Linear Feedforward Networks.

Neural Comput. 1991

[2]
Accelerating ordered subsets image reconstruction for X-ray CT using spatially nonuniform optimization transfer.

IEEE Trans Med Imaging. 2013-6-7

[3]
First-order convex feasibility algorithms for x-ray CT.

Med Phys. 2013-3

[4]
Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm.

Phys Med Biol. 2012-4-27

[5]
A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction.

IEEE Trans Med Imaging. 2011-11-8

[6]
Compressed sensing based cone-beam computed tomography reconstruction with a first-order method.

Med Phys. 2010-9

[7]
Fast model-based X-ray CT reconstruction using spatially nonhomogeneous ICD optimization.

IEEE Trans Image Process. 2010-7-19

[8]
3D forward and back-projection for X-ray CT using separable footprints.

IEEE Trans Med Imaging. 2010-6-7

[9]
Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems.

IEEE Trans Image Process. 2009-11

[10]
Realistic CT simulation using the 4D XCAT phantom.

Med Phys. 2008-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索