Suppr超能文献

基于迁移学习的天然产物靶标预测模型。

Target Prediction Model for Natural Products Using Transfer Learning.

机构信息

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

出版信息

Int J Mol Sci. 2021 Apr 28;22(9):4632. doi: 10.3390/ijms22094632.

Abstract

A large proportion of lead compounds are derived from natural products. However, most natural products have not been fully tested for their targets. To help resolve this problem, a model using transfer learning was built to predict targets for natural products. The model was pre-trained on a processed ChEMBL dataset and then fine-tuned on a natural product dataset. Benefitting from transfer learning and the data balancing technique, the model achieved a highly promising area under the receiver operating characteristic curve (AUROC) score of 0.910, with limited task-related training samples. Since the embedding distribution difference is reduced, embedding space analysis demonstrates that the model's outputs of natural products are reliable. Case studies have proved our model's performance in drug datasets. The fine-tuned model can successfully output all the targets of 62 drugs. Compared with a previous study, our model achieved better results in terms of both AUROC validation and its success rate for obtaining active targets among the top ones. The target prediction model using transfer learning can be applied in the field of natural product-based drug discovery and has the potential to find more lead compounds or to assist researchers in drug repurposing.

摘要

很大一部分铅化合物来源于天然产物。然而,大多数天然产物的靶点尚未经过充分的测试。为了解决这个问题,我们构建了一个使用迁移学习的模型来预测天然产物的靶点。该模型在经过预处理的 ChEMBL 数据集上进行预训练,然后在天然产物数据集上进行微调。得益于迁移学习和数据平衡技术,该模型在有限的与任务相关的训练样本下,实现了高达 0.910 的接收器工作特征曲线(AUROC)评分,具有很大的潜力。由于嵌入分布差异减小,嵌入空间分析表明模型对天然产物的输出是可靠的。案例研究证明了我们的模型在药物数据集上的性能。微调后的模型可以成功输出 62 种药物的所有靶点。与之前的研究相比,我们的模型在 AUROC 验证和获得前几个靶点的活性靶点的成功率方面都取得了更好的结果。使用迁移学习的靶标预测模型可应用于基于天然产物的药物发现领域,具有发现更多先导化合物或协助研究人员进行药物再利用的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验