Department of Biomechanical Engineering, University of Twente, Drienerlolaan 5, 7500 AE, Enschede, the Netherlands.
Orthopaedic Research Laboratory, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA, Nijmegen, the Netherlands.
Med Biol Eng Comput. 2019 May;57(5):1015-1027. doi: 10.1007/s11517-018-1936-7. Epub 2018 Dec 5.
Patient-specific implant design and pre- and intra-operative planning is becoming increasingly important in the orthopaedic field. For clinical feasibility of these techniques, fast and accurate segmentation of bone structures from MRI is essential. However, manual segmentation is time intensive and subject to inter- and intra-observer variation. The challenge in developing automatic segmentation algorithms for MRI data mainly exists in the inhomogeneity problem and the low contrast among cortical bone and adjacent tissues. In this paper, we proposed a method for automatic segmentation of knee bone structures for MRI data with a 3D local intensity clustering-based level set and a novel approach to determine the cortical boundary utilizing the normal vector of the trabecular surface. Application to clinical imaging data shows that our method is robust to MRI inhomogeneity. In comparing our method to manual segmentation in 18 femurs and tibiae, we found a dice similarity coefficient (DSC) of 0.9611 ± 0.0052 for the femurs and 0.9591 ± 0.0173 for tibiae. The average surface distance error was 0.4649 ± 0.1430 mm for the femurs and 0.4712 ± 0.2113 mm for the tibiae. The results of the automatic technique thus strongly corresponded to the manual segmentation using less than 3% of the time and with virtually no workload. Graphical abstract ᅟ.
患者特异性植入物设计以及术前和术中规划在骨科领域变得越来越重要。对于这些技术的临床可行性,从 MRI 快速准确地分割骨结构是必不可少的。然而,手动分割既费时又费力,并且存在观察者内和观察者间的差异。在开发用于 MRI 数据的自动分割算法方面的挑战主要存在于不均匀性问题以及皮质骨和相邻组织之间的对比度低的问题。在本文中,我们提出了一种基于 3D 局部强度聚类水平集的 MRI 数据膝关节骨结构自动分割方法,以及一种利用小梁表面法向量确定皮质边界的新方法。对临床成像数据的应用表明,我们的方法对 MRI 不均匀性具有鲁棒性。在将我们的方法与 18 个股骨和胫骨的手动分割进行比较时,我们发现股骨的骰子相似系数(DSC)为 0.9611±0.0052,胫骨为 0.9591±0.0173。股骨的平均表面距离误差为 0.4649±0.1430mm,胫骨为 0.4712±0.2113mm。因此,自动技术的结果与手动分割非常吻合,用时不到 3%,几乎没有工作量。