Shan Liang, Zach Christopher, Charles Cecil, Niethammer Marc
Department of Computer Science, University of North Carolina at Chapel Hill, USA.
Toshiba Research Europe, 208 Cambridge Science Park, Cambridge CB4 0GZ, UK.
Med Image Anal. 2014 Oct;18(7):1233-46. doi: 10.1016/j.media.2014.05.008. Epub 2014 Jun 28.
Osteoarthritis (OA) is the most common form of joint disease and often characterized by cartilage changes. Accurate quantitative methods are needed to rapidly screen large image databases to assess changes in cartilage morphology. We therefore propose a new automatic atlas-based cartilage segmentation method for future automatic OA studies. Atlas-based segmentation methods have been demonstrated to be robust and accurate in brain imaging and therefore also hold high promise to allow for reliable and high-quality segmentations of cartilage. Nevertheless, atlas-based methods have not been well explored for cartilage segmentation. A particular challenge is the thinness of cartilage, its relatively small volume in comparison to surrounding tissue and the difficulty to locate cartilage interfaces - for example the interface between femoral and tibial cartilage. This paper focuses on the segmentation of femoral and tibial cartilage, proposing a multi-atlas segmentation strategy with non-local patch-based label fusion which can robustly identify candidate regions of cartilage. This method is combined with a novel three-label segmentation method which guarantees the spatial separation of femoral and tibial cartilage, and ensures spatial regularity while preserving the thin cartilage shape through anisotropic regularization. Our segmentation energy is convex and therefore guarantees globally optimal solutions. We perform an extensive validation of the proposed method on 706 images of the Pfizer Longitudinal Study. Our validation includes comparisons of different atlas segmentation strategies, different local classifiers, and different types of regularizers. To compare to other cartilage segmentation approaches we validate based on the 50 images of the SKI10 dataset.
骨关节炎(OA)是最常见的关节疾病形式,通常以软骨变化为特征。需要准确的定量方法来快速筛选大型图像数据库,以评估软骨形态的变化。因此,我们提出了一种新的基于图谱的软骨自动分割方法,用于未来的骨关节炎自动研究。基于图谱的分割方法在脑成像中已被证明是强大且准确的,因此在软骨的可靠和高质量分割方面也具有很高的前景。然而,基于图谱的方法在软骨分割方面尚未得到充分探索。一个特别的挑战是软骨的薄度、与周围组织相比相对较小的体积以及定位软骨界面的困难——例如股骨和胫骨软骨之间的界面。本文重点关注股骨和胫骨软骨的分割,提出了一种基于多图谱分割策略的非局部补丁标签融合方法,该方法可以稳健地识别软骨的候选区域。该方法与一种新颖的三标签分割方法相结合,该方法保证了股骨和胫骨软骨的空间分离,并通过各向异性正则化在保持薄软骨形状的同时确保空间规则性。我们的分割能量是凸的,因此保证了全局最优解。我们在辉瑞纵向研究的706张图像上对所提出的方法进行了广泛的验证。我们的验证包括比较不同的图谱分割策略、不同的局部分类器和不同类型的正则化器。为了与其他软骨分割方法进行比较,我们基于SKI10数据集的50张图像进行了验证。