Suppr超能文献

基于图谱的膝关节磁共振图像自动三标签软骨分割

Automatic atlas-based three-label cartilage segmentation from MR knee images.

作者信息

Shan Liang, Zach Christopher, Charles Cecil, Niethammer Marc

机构信息

Department of Computer Science, University of North Carolina at Chapel Hill, USA.

Toshiba Research Europe, 208 Cambridge Science Park, Cambridge CB4 0GZ, UK.

出版信息

Med Image Anal. 2014 Oct;18(7):1233-46. doi: 10.1016/j.media.2014.05.008. Epub 2014 Jun 28.

Abstract

Osteoarthritis (OA) is the most common form of joint disease and often characterized by cartilage changes. Accurate quantitative methods are needed to rapidly screen large image databases to assess changes in cartilage morphology. We therefore propose a new automatic atlas-based cartilage segmentation method for future automatic OA studies. Atlas-based segmentation methods have been demonstrated to be robust and accurate in brain imaging and therefore also hold high promise to allow for reliable and high-quality segmentations of cartilage. Nevertheless, atlas-based methods have not been well explored for cartilage segmentation. A particular challenge is the thinness of cartilage, its relatively small volume in comparison to surrounding tissue and the difficulty to locate cartilage interfaces - for example the interface between femoral and tibial cartilage. This paper focuses on the segmentation of femoral and tibial cartilage, proposing a multi-atlas segmentation strategy with non-local patch-based label fusion which can robustly identify candidate regions of cartilage. This method is combined with a novel three-label segmentation method which guarantees the spatial separation of femoral and tibial cartilage, and ensures spatial regularity while preserving the thin cartilage shape through anisotropic regularization. Our segmentation energy is convex and therefore guarantees globally optimal solutions. We perform an extensive validation of the proposed method on 706 images of the Pfizer Longitudinal Study. Our validation includes comparisons of different atlas segmentation strategies, different local classifiers, and different types of regularizers. To compare to other cartilage segmentation approaches we validate based on the 50 images of the SKI10 dataset.

摘要

骨关节炎(OA)是最常见的关节疾病形式,通常以软骨变化为特征。需要准确的定量方法来快速筛选大型图像数据库,以评估软骨形态的变化。因此,我们提出了一种新的基于图谱的软骨自动分割方法,用于未来的骨关节炎自动研究。基于图谱的分割方法在脑成像中已被证明是强大且准确的,因此在软骨的可靠和高质量分割方面也具有很高的前景。然而,基于图谱的方法在软骨分割方面尚未得到充分探索。一个特别的挑战是软骨的薄度、与周围组织相比相对较小的体积以及定位软骨界面的困难——例如股骨和胫骨软骨之间的界面。本文重点关注股骨和胫骨软骨的分割,提出了一种基于多图谱分割策略的非局部补丁标签融合方法,该方法可以稳健地识别软骨的候选区域。该方法与一种新颖的三标签分割方法相结合,该方法保证了股骨和胫骨软骨的空间分离,并通过各向异性正则化在保持薄软骨形状的同时确保空间规则性。我们的分割能量是凸的,因此保证了全局最优解。我们在辉瑞纵向研究的706张图像上对所提出的方法进行了广泛的验证。我们的验证包括比较不同的图谱分割策略、不同的局部分类器和不同类型的正则化器。为了与其他软骨分割方法进行比较,我们基于SKI10数据集的50张图像进行了验证。

相似文献

1
Automatic atlas-based three-label cartilage segmentation from MR knee images.
Med Image Anal. 2014 Oct;18(7):1233-46. doi: 10.1016/j.media.2014.05.008. Epub 2014 Jun 28.
2
Atlas-based knee cartilage assessment.
Magn Reson Med. 2011 Aug;66(2):574-83. doi: 10.1002/mrm.22836. Epub 2011 Feb 24.
3
Automatic segmentation of articular cartilage in magnetic resonance images of the knee.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):186-94. doi: 10.1007/978-3-540-75759-7_23.
4
Automatic Atlas-based Three-label Cartilage Segmentation from MR Knee Images.
Proc Workshop Math Methods Biomed Image Analysis. 2012:241-246. doi: 10.1109/mmbia.2012.6164757.
5
Automatic segmentation of the articular cartilage in knee MRI using a hierarchical multi-class classification scheme.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):327-34. doi: 10.1007/11566465_41.
6
A technique for visualization and mapping of local cartilage thickness changes in MR images of osteoarthritic knee.
Eur J Radiol. 2012 Nov;81(11):3404-11. doi: 10.1016/j.ejrad.2012.03.024. Epub 2012 May 7.
8
Reliability-based robust multi-atlas label fusion for brain MRI segmentation.
Artif Intell Med. 2019 May;96:12-24. doi: 10.1016/j.artmed.2019.03.004. Epub 2019 Mar 8.
9
Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies.
Magn Reson Imaging. 2013 Dec;31(10):1731-43. doi: 10.1016/j.mri.2013.06.005. Epub 2013 Jul 15.

引用本文的文献

2
A method framework of semi-automatic knee bone segmentation and reconstruction from computed tomography (CT) images.
Quant Imaging Med Surg. 2024 Oct 1;14(10):7151-7175. doi: 10.21037/qims-24-821. Epub 2024 Sep 26.
3
[Automatic modeling of the knee joint based on artificial intelligence].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2023 Mar 15;37(3):348-352. doi: 10.7507/1002-1892.202212008.
4
Atlas-Based Segmentation in Extraction of Knee Joint Bone Structures from CT and MR.
Sensors (Basel). 2022 Nov 19;22(22):8960. doi: 10.3390/s22228960.
5
Automatic Bone Segmentation from MRI for Real-Time Knee Tracking in Fluoroscopic Imaging.
Diagnostics (Basel). 2022 Sep 15;12(9):2228. doi: 10.3390/diagnostics12092228.
6
Knee Bone and Cartilage Segmentation Based on a 3D Deep Neural Network Using Adversarial Loss for Prior Shape Constraint.
Front Med (Lausanne). 2022 May 20;9:792900. doi: 10.3389/fmed.2022.792900. eCollection 2022.
9
The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs.
Comput Med Imaging Graph. 2020 Dec;86:101793. doi: 10.1016/j.compmedimag.2020.101793. Epub 2020 Sep 28.

本文引用的文献

1
Continuous Maximal Flows and Wulff Shapes: Application to MRFs.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2009 Jun;2009:1911-1918. doi: 10.1109/CVPR.2009.5206565.
2
AUTOMATIC MULTI-ATLAS-BASED CARTILAGE SEGMENTATION FROM KNEE MR IMAGES.
Proc IEEE Int Symp Biomed Imaging. 2012 Dec 31;2012:1028-1031. doi: 10.1109/ISBI.2012.6235733.
3
Automatic Atlas-based Three-label Cartilage Segmentation from MR Knee Images.
Proc Workshop Math Methods Biomed Image Analysis. 2012:241-246. doi: 10.1109/mmbia.2012.6164757.
4
Unsupervised segmentation and quantification of anatomical knee features: data from the Osteoarthritis Initiative.
IEEE Trans Biomed Eng. 2012 Apr;59(4):1177-86. doi: 10.1109/TBME.2012.2186612. Epub 2012 Feb 3.
5
A supervised patch-based approach for human brain labeling.
IEEE Trans Med Imaging. 2011 Oct;30(10):1852-62. doi: 10.1109/TMI.2011.2156806. Epub 2011 May 19.
6
Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation.
Neuroimage. 2011 Jan 15;54(2):940-54. doi: 10.1016/j.neuroimage.2010.09.018. Epub 2010 Sep 17.
7
LOGISMOS--layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint.
IEEE Trans Med Imaging. 2010 Dec;29(12):2023-37. doi: 10.1109/TMI.2010.2058861. Epub 2010 Jul 19.
8
Automatic human knee cartilage segmentation from 3D magnetic resonance images.
IEEE Trans Biomed Eng. 2010 Nov;57(11). doi: 10.1109/TBME.2010.2058112. Epub 2010 Jul 15.
9
Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee.
IEEE Trans Med Imaging. 2010 Jan;29(1):55-64. doi: 10.1109/TMI.2009.2024743. Epub 2009 Jun 10.
10
Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy.
Neuroimage. 2009 Jul 1;46(3):726-38. doi: 10.1016/j.neuroimage.2009.02.018. Epub 2009 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验