Fripp Jurgen, Crozier Stuart, Warfield Simon K, Ourselin Sébastien
BioMedIA Lab, Autonomous Systems Laboratory, CSIRO ICT Centre, Level 20, 300 Adelaide street, Brisbane, QLD 4001, Australia.
Phys Med Biol. 2007 Mar 21;52(6):1617-31. doi: 10.1088/0031-9155/52/6/005. Epub 2007 Feb 27.
The accurate segmentation of the articular cartilages from magnetic resonance (MR) images of the knee is important for clinical studies and drug trials into conditions like osteoarthritis. Currently, segmentations are obtained using time-consuming manual or semi-automatic algorithms which have high inter- and intra-observer variabilities. This paper presents an important step towards obtaining automatic and accurate segmentations of the cartilages, namely an approach to automatically segment the bones and extract the bone-cartilage interfaces (BCI) in the knee. The segmentation is performed using three-dimensional active shape models, which are initialized using an affine registration to an atlas. The BCI are then extracted using image information and prior knowledge about the likelihood of each point belonging to the interface. The accuracy and robustness of the approach was experimentally validated using an MR database of fat suppressed spoiled gradient recall images. The (femur, tibia, patella) bone segmentation had a median Dice similarity coefficient of (0.96, 0.96, 0.89) and an average point-to-surface error of 0.16 mm on the BCI. The extracted BCI had a median surface overlap of 0.94 with the real interface, demonstrating its usefulness for subsequent cartilage segmentation or quantitative analysis.
从膝关节的磁共振(MR)图像中准确分割出关节软骨,对于骨关节炎等病症的临床研究和药物试验至关重要。目前,分割是通过耗时的手动或半自动算法完成的,这些算法在观察者间和观察者内都存在很大的变异性。本文朝着实现软骨的自动且准确分割迈出了重要一步,即一种自动分割膝关节骨骼并提取骨软骨界面(BCI)的方法。分割使用三维主动形状模型进行,该模型通过仿射配准到图谱进行初始化。然后利用图像信息和关于每个点属于界面的可能性的先验知识来提取BCI。使用脂肪抑制扰相梯度回波图像的MR数据库对该方法的准确性和鲁棒性进行了实验验证。(股骨、胫骨、髌骨)的骨分割在BCI上的中位骰子相似系数为(0.96、0.96、0.89),平均点到面误差为0.16毫米。提取的BCI与真实界面的中位表面重叠率为0.94,证明了其在后续软骨分割或定量分析中的有用性。