Department of Neurology, University of California, San Francisco/Berkeley, CA 94158, United States of America. Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, United States of America.
J Neural Eng. 2019 Feb;16(1):011001. doi: 10.1088/1741-2552/aaf12e. Epub 2018 Nov 15.
Advances in brain science and computer technology in the past decade have led to exciting developments in brain-computer interface (BCI), thereby making BCI a top research area in applied science. The renaissance of BCI opens new methods of neurorehabilitation for physically disabled people (e.g. paralyzed patients and amputees) and patients with brain injuries (e.g. stroke patients). Recent technological advances such as wireless recording, machine learning analysis, and real-time temporal resolution have increased interest in electroencephalographic (EEG) based BCI approaches. Many BCI studies have focused on decoding EEG signals associated with whole-body kinematics/kinetics, motor imagery, and various senses. Thus, there is a need to understand the various experimental paradigms used in EEG-based BCI systems. Moreover, given that there are many available options, it is essential to choose the most appropriate BCI application to properly manipulate a neuroprosthetic or neurorehabilitation device. The current review evaluates EEG-based BCI paradigms regarding their advantages and disadvantages from a variety of perspectives. For each paradigm, various EEG decoding algorithms and classification methods are evaluated. The applications of these paradigms with targeted patients are summarized. Finally, potential problems with EEG-based BCI systems are discussed, and possible solutions are proposed.
过去十年中,脑科学和计算机技术的进步带来了脑机接口(BCI)的令人兴奋的发展,使 BCI 成为应用科学的顶级研究领域。BCI 的复兴为身体残疾者(如瘫痪患者和截肢者)和脑损伤患者(如中风患者)开辟了新的神经康复方法。最近的技术进步,如无线记录、机器学习分析和实时时间分辨率,增加了对基于脑电图(EEG)的 BCI 方法的兴趣。许多 BCI 研究都集中在解码与全身运动学/动力学、运动想象和各种感觉相关的 EEG 信号上。因此,有必要了解 EEG 基 BCI 系统中使用的各种实验范式。此外,鉴于有许多可用的选项,选择最合适的 BCI 应用程序来正确操作神经假体或神经康复设备是至关重要的。本综述从多个角度评估了基于 EEG 的 BCI 范式的优缺点。对于每个范式,评估了各种 EEG 解码算法和分类方法。总结了这些范式在目标患者中的应用。最后,讨论了基于 EEG 的 BCI 系统可能存在的问题,并提出了可能的解决方案。