Suppr超能文献

一种用于人机交互的通用非侵入性神经运动接口。

A generic non-invasive neuromotor interface for human-computer interaction.

作者信息

Kaifosh Patrick, Reardon Thomas R

机构信息

Reality Labs at Meta, New York, NY, USA.

出版信息

Nature. 2025 Jul 23. doi: 10.1038/s41586-025-09255-w.

Abstract

Since the advent of computing, humans have sought computer input technologies that are expressive, intuitive and universal. While diverse modalities have been developed, including keyboards, mice and touchscreens, they require interaction with a device that can be limiting, especially in on-the-go scenarios. Gesture-based systems use cameras or inertial sensors to avoid an intermediary device, but tend to perform well only for unobscured movements. By contrast, brain-computer or neuromotor interfaces that directly interface with the body's electrical signalling have been imagined to solve the interface problem, but high-bandwidth communication has been demonstrated only using invasive interfaces with bespoke decoders designed for single individuals. Here, we describe the development of a generic non-invasive neuromotor interface that enables computer input decoded from surface electromyography (sEMG). We developed a highly sensitive, easily donned sEMG wristband and a scalable infrastructure for collecting training data from thousands of consenting participants. Together, these data enabled us to develop generic sEMG decoding models that generalize across people. Test users demonstrate a closed-loop median performance of gesture decoding of 0.66 target acquisitions per second in a continuous navigation task, 0.88 gesture detections per second in a discrete-gesture task and handwriting at 20.9 words per minute. We demonstrate that the decoding performance of handwriting models can be further improved by 16% by personalizing sEMG decoding models. To our knowledge, this is the first high-bandwidth neuromotor interface with performant out-of-the-box generalization across people.

摘要

自计算机问世以来,人类一直在寻找具有表现力、直观性和通用性的计算机输入技术。虽然已经开发出了多种模式,包括键盘、鼠标和触摸屏,但它们需要与设备进行交互,这可能会受到限制,尤其是在移动场景中。基于手势的系统使用摄像头或惯性传感器来避免使用中间设备,但往往只在动作清晰可见时表现良好。相比之下,人们设想直接与身体电信号接口的脑机或神经运动接口来解决接口问题,但仅使用为个体定制的侵入式接口与定制解码器才证明了高带宽通信的可行性。在此,我们描述了一种通用的非侵入性神经运动接口的开发,该接口能够从表面肌电图(sEMG)解码计算机输入。我们开发了一种高灵敏度、易于佩戴的sEMG腕带以及一个可扩展的基础设施,用于从数千名同意参与的参与者那里收集训练数据。这些数据共同使我们能够开发出适用于所有人的通用sEMG解码模型。测试用户在连续导航任务中展示了手势解码的闭环平均性能为每秒0.66次目标获取,在离散手势任务中为每秒0.88次手势检测,手写速度为每分钟20.9个单词。我们证明,通过个性化sEMG解码模型,手写模型的解码性能可以进一步提高16%。据我们所知,这是首个具有跨人群开箱即用高性能泛化能力的高带宽神经运动接口。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验