Suppr超能文献

细胞外质子通过使电压传感器弛豫失稳加速 hERG 通道失活。

Extracellular protons accelerate hERG channel deactivation by destabilizing voltage sensor relaxation.

机构信息

Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.

Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada

出版信息

J Gen Physiol. 2019 Feb 4;151(2):231-246. doi: 10.1085/jgp.201812137. Epub 2018 Dec 7.

Abstract

hERG channels underlie the delayed-rectifier K channel current (I), which is crucial for membrane repolarization and therefore termination of the cardiac action potential. hERG channels display unusually slow deactivation gating, which contributes to a resurgent current upon repolarization and may protect against post-depolarization-induced arrhythmias. hERG channels also exhibit robust mode shift behavior, which reflects the energetic separation of activation and deactivation pathways due to voltage sensor relaxation into a stable activated state. The mechanism of relaxation is unknown and likely contributes to slow hERG channel deactivation. Here, we use extracellular acidification to probe the structural determinants of voltage sensor relaxation and its influence on the deactivation gating pathway. Using gating current recordings and voltage clamp fluorimetry measurements of voltage sensor domain dynamics, we show that voltage sensor relaxation is destabilized at pH 6.5, causing an ∼20-mV shift in the voltage dependence of deactivation. We show that the pH dependence of the resultant loss of mode shift behavior is similar to that of the deactivation kinetics acceleration, suggesting that voltage sensor relaxation correlates with slower pore gate closure. Neutralization of D509 in S3 also destabilizes the relaxed state of the voltage sensor, mimicking the effect of protons, suggesting that acidic residues on S3, which act as countercharges to S4 basic residues, are involved in stabilizing the relaxed state and slowing deactivation kinetics. Our findings identify the mechanistic determinants of voltage sensor relaxation and define the long-sought mechanism by which protons accelerate hERG deactivation.

摘要

hERG 通道是延迟整流钾通道电流 (I) 的基础,这对于膜复极化至关重要,也是心脏动作电位终止的关键。hERG 通道表现出异常缓慢的失活动力学,这导致在复极化时出现再激发电流,可能有助于防止去极化后诱发的心律失常。hERG 通道还表现出强大的模式转换行为,这反映了由于电压传感器松弛进入稳定激活状态,激活和失活动力学途径之间的能量分离。松弛的机制尚不清楚,可能导致 hERG 通道失活缓慢。在这里,我们使用细胞外酸化来探测电压传感器松弛的结构决定因素及其对失活动力学途径的影响。通过门控电流记录和电压钳荧光测量电压传感器域动力学,我们表明 pH 值为 6.5 时,电压传感器松弛失稳,导致失活动力学的电压依赖性发生约 20mV 的偏移。我们表明,由此产生的模式转换行为丧失的 pH 值依赖性与失活动力学加速的 pH 值依赖性相似,表明电压传感器松弛与较慢的孔门关闭相关。S3 中的 D509 中性化也会使电压传感器的松弛状态不稳定,模拟质子的作用,这表明 S3 上的酸性残基作为 S4 碱性残基的反电荷,参与稳定松弛状态并减缓失活动力学。我们的发现确定了电压传感器松弛的机制决定因素,并定义了长期以来人们一直在寻找的质子加速 hERG 失活的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe3/6363419/f83c23d7630a/JGP_201812137_Fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验