Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada.
Biophys J. 2022 Dec 6;121(23):4585-4599. doi: 10.1016/j.bpj.2022.10.032. Epub 2022 Oct 29.
A cationic leak current known as an "omega current" may arise from mutations of the first charged residue in the S4 of the voltage sensor domains of sodium and potassium voltage-gated channels. The voltage-sensing domains (VSDs) in these mutated channels act as pores allowing nonspecific passage of cations, such as Li, K, Cs, and guanidinium. Interestingly, no omega currents have been previously detected in the nonswapped voltage-gated potassium channels such as the human-ether-a-go-go-related (hERG1), hyperpolarization-activated cyclic nucleotide-gated, and ether-a-go-go channels. In this work, we discovered a novel omega current by mutating the first charged residue of the S4 of the hERG1, K525 to serine. To characterize this omega current, we used various probes, including the hERG1 pore domain blocker, dofetilide, to show that the omega current does not require cation flux via the canonical pore domain. In addition, the omega flux does not cross the conventional selectivity filter. We also show that the mutated channel (K525S hERG1) conducts guanidinium. These data are indicative of the formation of an omega current channel within the VSD. Using molecular dynamics simulations with replica-exchange umbrella sampling simulations of the wild-type hERG1 and the K525S hERG1, we explored the molecular underpinnings governing the cation flow in the VSD of the mutant. We also show that the wild-type hERG1 may form water crevices supported by the biophysical surface accessibility data. Overall, our multidisciplinary study demonstrates that the VSD of hERG1 may act as a cation-selective channel wherein a mutation of the first charged residue in the S4 generates an omega current. Our simulation uncovers the atomistic underpinning of this mechanism.
一种被称为“ω电流”的阳离子泄漏电流可能源于钠和钾电压门控通道电压传感器域中第一个带电残基的突变。在这些突变通道中,电压感应域 (VSD) 充当允许阳离子(如 Li、K、Cs 和胍基)非特异性通过的孔。有趣的是,以前在非交换型电压门控钾通道(如人类醚-a-go-go 相关 (hERG1)、超极化激活环核苷酸门控和醚-a-go-go 通道)中尚未检测到 ω电流。在这项工作中,我们通过将 hERG1 的 S4 的第一个带电残基 K525 突变为丝氨酸,发现了一种新型的 ω 电流。为了表征这种 ω 电流,我们使用了各种探针,包括 hERG1 孔域阻断剂多非利特,表明 ω 电流不需要通过经典的孔域阳离子通量。此外,ω 通量不穿过常规的选择性过滤器。我们还表明,突变通道 (K525S hERG1) 传导胍基。这些数据表明在 VSD 内形成了 ω 电流通道。使用分子动力学模拟和野生型 hERG1 和 K525S hERG1 的 replica-exchange 伞状采样模拟,我们探索了控制突变体 VSD 中阳离子流的分子基础。我们还表明,野生型 hERG1 可能形成由生物物理表面可及性数据支持的水隙。总体而言,我们的多学科研究表明,hERG1 的 VSD 可能作为阳离子选择性通道发挥作用,其中 S4 中第一个带电残基的突变会产生 ω 电流。我们的模拟揭示了这种机制的原子基础。