Suppr超能文献

基于强化学习的自适应采样:通过探索蛋白质构象景观获得奖励(REAP)。

Reinforcement Learning Based Adaptive Sampling: REAPing Rewards by Exploring Protein Conformational Landscapes.

出版信息

J Phys Chem B. 2018 Sep 6;122(35):8386-8395. doi: 10.1021/acs.jpcb.8b06521. Epub 2018 Aug 28.

Abstract

One of the key limitations of Molecular Dynamics (MD) simulations is the computational intractability of sampling protein conformational landscapes associated with either large system size or long time scales. To overcome this bottleneck, we present the REinforcement learning based Adaptive samPling (REAP) algorithm that aims to efficiently sample conformational space by learning the relative importance of each order parameter as it samples the landscape. To achieve this, the algorithm uses concepts from the field of reinforcement learning, a subset of machine learning, which rewards sampling along important degrees of freedom and disregards others that do not facilitate exploration or exploitation. We demonstrate the effectiveness of REAP by comparing the sampling to long continuous MD simulations and least-counts adaptive sampling on two model landscapes (L-shaped and circular) and realistic systems such as alanine dipeptide and Src kinase. In all four systems, the REAP algorithm consistently demonstrates its ability to explore conformational space faster than the other two methods when comparing the expected values of the landscape discovered for a given amount of time. The key advantage of REAP is on-the-fly estimation of the importance of collective variables, which makes it particularly useful for systems with limited structural information.

摘要

分子动力学 (MD) 模拟的一个主要限制是,对于与大系统规模或长时间尺度相关的蛋白质构象景观,采样的计算难以处理。为了克服这个瓶颈,我们提出了基于强化学习的自适应采样 (REAP) 算法,旨在通过学习采样景观时每个序参量的相对重要性,有效地对构象空间进行采样。为了实现这一点,该算法使用了强化学习领域的概念,强化学习是机器学习的一个子集,它根据重要自由度进行采样奖励,而忽略其他不利于探索或利用的自由度。我们通过将采样与长连续 MD 模拟和最少计数自适应采样在两个模型景观 (L 形和圆形) 以及实际系统 (如丙氨酸二肽和Src 激酶) 上进行比较,证明了 REAP 的有效性。在所有四个系统中,当比较给定时间内发现的景观的期望值时,REAP 算法始终表现出比其他两种方法更快地探索构象空间的能力。REAP 的关键优势在于对集体变量重要性的实时估计,这使其特别适用于结构信息有限的系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验