Suppr超能文献

基于全基因组酶进化模型预测催化周转率的强上位性。

Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates.

机构信息

Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA.

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.

出版信息

Nat Commun. 2018 Dec 10;9(1):5270. doi: 10.1038/s41467-018-07649-1.

Abstract

Systems biology describes cellular phenotypes as properties that emerge from the complex interactions of individual system components. Little is known about how these interactions have affected the evolution of metabolic enzymes. Here, we combine genome-scale metabolic modeling with population genetics models to simulate the evolution of enzyme turnover numbers (ks) from a theoretical ancestor with inefficient enzymes. This systems view of biochemical evolution reveals strong epistatic interactions between metabolic genes that shape evolutionary trajectories and influence the magnitude of evolved ks. Diminishing returns epistasis prevents enzymes from developing higher ks in all reactions and keeps the organism far from the potential fitness optimum. Multifunctional enzymes cause synergistic epistasis that slows down adaptation. The resulting fitness landscape allows k evolution to be convergent. Predicted k parameters show a significant correlation with experimental data, validating our modeling approach. Our analysis reveals how evolutionary forces shape modern ks and the whole of metabolism.

摘要

系统生物学将细胞表型描述为从单个系统组件的复杂相互作用中涌现出的特性。对于这些相互作用如何影响代谢酶的进化,我们知之甚少。在这里,我们将基因组规模的代谢建模与群体遗传学模型相结合,从理论上具有低效酶的祖先模拟酶周转率(ks)的进化。这种生化进化的系统观点揭示了代谢基因之间的强烈上位性相互作用,这些相互作用塑造了进化轨迹并影响了进化的 ks 幅度。递减回报上位性阻止了所有反应中酶的 ks 升高,并使生物体远离潜在的适应度最优状态。多功能酶导致协同上位性,从而减缓了适应速度。由此产生的适应度景观允许 k 的进化具有趋同性。预测的 k 参数与实验数据具有显著相关性,验证了我们的建模方法。我们的分析揭示了进化力量如何塑造现代 ks 和整个代谢。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42eb/6288127/aec113398bb0/41467_2018_7649_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验