Suppr超能文献

代谢专家的动力学分析表明体内酶周转率具有稳定性和一致性。

Kinetic profiling of metabolic specialists demonstrates stability and consistency of in vivo enzyme turnover numbers.

机构信息

Department of Bioengineering, University of California San Diego, La Jolla, CA 92093;

Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093.

出版信息

Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):23182-23190. doi: 10.1073/pnas.2001562117. Epub 2020 Sep 1.

Abstract

Enzyme turnover numbers (s) are essential for a quantitative understanding of cells. Because s are traditionally measured in low-throughput assays, they can be inconsistent, labor-intensive to obtain, and can miss in vivo effects. We use a data-driven approach to estimate in vivo s using metabolic specialist strains that resulted from gene knockouts in central metabolism followed by metabolic optimization via laboratory evolution. By combining absolute proteomics with fluxomics data, we find that in vivo s are robust against genetic perturbations, suggesting that metabolic adaptation to gene loss is mostly achieved through other mechanisms, like gene-regulatory changes. Combining machine learning and genome-scale metabolic models, we show that the obtained in vivo s predict unseen proteomics data with much higher precision than in vitro s. The results demonstrate that in vivo s can solve the problem of inconsistent and low-coverage parameterizations of genome-scale cellular models.

摘要

酶转化数(s)对于定量理解细胞至关重要。由于 s 传统上是在低通量测定中测量的,因此它们可能不一致,获取起来劳动强度大,并且可能会错过体内效应。我们使用数据驱动的方法来使用代谢专家菌株来估计体内 s,这些菌株是通过基因敲除中央代谢然后通过实验室进化进行代谢优化产生的。通过将绝对蛋白质组学与通量组学数据相结合,我们发现体内 s 对遗传扰动具有鲁棒性,这表明代谢对基因丢失的适应主要是通过其他机制实现的,例如基因调控变化。结合机器学习和基因组规模的代谢模型,我们表明获得的体内 s 比体外 s 更准确地预测未见过的蛋白质组学数据。结果表明,体内 s 可以解决基因组规模细胞模型参数化不一致和覆盖范围低的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bea/7502767/ae2ffa9b2f54/pnas.2001562117fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验