Suppr超能文献

深度卷积网络不是基于全局物体形状进行分类的。

Deep convolutional networks do not classify based on global object shape.

机构信息

Department of Psychology, University of California, Los Angeles, Los Angeles, California, United States of America.

University of Nevada, Reno, Nevada, United States of America.

出版信息

PLoS Comput Biol. 2018 Dec 7;14(12):e1006613. doi: 10.1371/journal.pcbi.1006613. eCollection 2018 Dec.

Abstract

Deep convolutional networks (DCNNs) are achieving previously unseen performance in object classification, raising questions about whether DCNNs operate similarly to human vision. In biological vision, shape is arguably the most important cue for recognition. We tested the role of shape information in DCNNs trained to recognize objects. In Experiment 1, we presented a trained DCNN with object silhouettes that preserved overall shape but were filled with surface texture taken from other objects. Shape cues appeared to play some role in the classification of artifacts, but little or none for animals. In Experiments 2-4, DCNNs showed no ability to classify glass figurines or outlines but correctly classified some silhouettes. Aspects of these results led us to hypothesize that DCNNs do not distinguish object's bounding contours from other edges, and that DCNNs access some local shape features, but not global shape. In Experiment 5, we tested this hypothesis with displays that preserved local features but disrupted global shape, and vice versa. With disrupted global shape, which reduced human accuracy to 28%, DCNNs gave the same classification labels as with ordinary shapes. Conversely, local contour changes eliminated accurate DCNN classification but caused no difficulty for human observers. These results provide evidence that DCNNs have access to some local shape information in the form of local edge relations, but they have no access to global object shapes.

摘要

深度卷积网络(DCNN)在物体分类方面取得了前所未有的性能,这引发了人们的疑问,即 DCNN 是否与人类视觉的运作方式相似。在生物视觉中,形状可以说是识别最重要的线索。我们测试了形状信息在经过训练以识别物体的 DCNN 中的作用。在实验 1 中,我们向经过训练的 DCNN 展示了保留整体形状但填充了来自其他物体的表面纹理的物体轮廓。形状线索似乎在对人工制品的分类中发挥了一定作用,但对动物的作用很小或没有。在实验 2-4 中,DCNN 无法对玻璃小雕像或轮廓进行分类,但可以正确分类一些轮廓。这些结果的某些方面使我们假设 DCNN 无法将物体的边界轮廓与其他边缘区分开来,并且 DCNN 可以访问某些局部形状特征,但不是全局形状。在实验 5 中,我们用保留局部特征但破坏全局形状的显示器和反之亦然来测试这个假设。全局形状被破坏,使人类的准确率降低到 28%,而 DCNN 则给出与普通形状相同的分类标签。相反,局部轮廓变化消除了 DCNN 的准确分类,但对人类观察者没有造成任何困难。这些结果提供了证据表明,DCNN 可以以局部边缘关系的形式访问某些局部形状信息,但它们无法访问全局物体形状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60af/6306249/8fbbf4e1c799/pcbi.1006613.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验