Suppr超能文献

人脸识别依赖于专门的机制,这些机制针对的是不变的面部特征:来自专门针对人脸或物体识别进行优化的深度神经网络的见解。

Face Recognition Depends on Specialized Mechanisms Tuned to View-Invariant Facial Features: Insights from Deep Neural Networks Optimized for Face or Object Recognition.

机构信息

School of Psychological Sciences, Tel Aviv University.

Sagol School of Neuroscience, Tel Aviv University.

出版信息

Cogn Sci. 2021 Sep;45(9):e13031. doi: 10.1111/cogs.13031.

Abstract

Face recognition is a computationally challenging classification task. Deep convolutional neural networks (DCNNs) are brain-inspired algorithms that have recently reached human-level performance in face and object recognition. However, it is not clear to what extent DCNNs generate a human-like representation of face identity. We have recently revealed a subset of facial features that are used by humans for face recognition. This enables us now to ask whether DCNNs rely on the same facial information and whether this human-like representation depends on a system that is optimized for face identification. In the current study, we examined the representation of DCNNs of faces that differ in features that are critical or non-critical for human face recognition. Our findings show that DCNNs optimized for face identification are tuned to the same facial features used by humans for face recognition. Sensitivity to these features was highly correlated with performance of the DCNN on a benchmark face recognition task. Moreover, sensitivity to these features and a view-invariant face representation emerged at higher layers of a DCNN optimized for face recognition but not for object recognition. This finding parallels the division to a face and an object system in high-level visual cortex. Taken together, these findings validate human perceptual models of face recognition, enable us to use DCNNs to test predictions about human face and object recognition as well as contribute to the interpretability of DCNNs.

摘要

人脸识别是一项具有挑战性的计算分类任务。深度卷积神经网络(DCNN)是一种受大脑启发的算法,最近在人脸识别和目标识别方面达到了人类水平的性能。然而,目前还不清楚 DCNN 在多大程度上生成了类似于人类的面部身份表示。我们最近揭示了人类用于人脸识别的一部分面部特征。这使我们现在能够问,DCNN 是否依赖于相同的面部信息,以及这种类似人类的表示是否依赖于针对面部识别进行优化的系统。在当前的研究中,我们研究了对人类人脸识别至关重要或不重要的特征不同的人脸的 DCNN 表示。我们的研究结果表明,针对人脸识别进行优化的 DCNN 会针对人类用于人脸识别的相同面部特征进行调整。对这些特征的敏感性与 DCNN 在基准人脸识别任务上的性能高度相关。此外,对这些特征的敏感性和不变视角的面部表示出现在针对人脸识别进行优化的 DCNN 的较高层,但不出现在针对对象识别进行优化的 DCNN 中。这一发现与高级视觉皮层中面部和对象系统的划分相呼应。综上所述,这些发现验证了人类对面部识别的感知模型,使我们能够使用 DCNN 来测试人类面部和目标识别的预测,也有助于 DCNN 的可解释性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验