Suppr超能文献

现实世界中物体的大小充当了物体空间的一个轴。

Real-world size of objects serves as an axis of object space.

机构信息

Department of Psychology and Tsinghua Laboratory of Brain & Intelligence, Tsinghua University, Beijing, China.

Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China.

出版信息

Commun Biol. 2022 Jul 27;5(1):749. doi: 10.1038/s42003-022-03711-3.

Abstract

Our mind can represent various objects from physical world in an abstract and complex high-dimensional object space, with axes encoding critical features to quickly and accurately recognize objects. Among object features identified in previous neurophysiological and fMRI studies that may serve as the axes, objects' real-world size is of particular interest because it provides not only visual information for broad conceptual distinctions between objects but also ecological information for objects' affordance. Here we use deep convolutional neural networks (DCNNs), which enable direct manipulation of visual experience and units' activation, to explore how objects' real-world size is extracted to construct the axis of object space. Like the human brain, the DCNNs pre-trained for object recognition also encode objects' size as an independent axis of the object space. Further, we find that the shape of objects, rather than retinal size, context, task demands or texture features, is critical to inferring objects' size for both DCNNs and humans. In short, with DCNNs as a brain-like model, our study devises a paradigm supplemental to conventional approaches to explore the structure of object space, which provides computational support for empirical observations on human perceptual and neural representations of objects.

摘要

我们的大脑可以在一个抽象而复杂的高维对象空间中表示来自物理世界的各种对象,这些对象的轴编码着关键特征,可用于快速、准确地识别对象。在之前的神经生理学和 fMRI 研究中确定的对象特征中,物体的实际大小特别有趣,因为它不仅为物体之间的广泛概念区分提供了视觉信息,还为物体的可及性提供了生态信息。在这里,我们使用深度卷积神经网络 (DCNN) 来探索物体的实际大小如何被提取以构建对象空间的轴,DCNN 可以直接操纵视觉体验和单元的激活。与人类大脑一样,经过物体识别预训练的 DCNN 也将物体的大小编码为对象空间的一个独立轴。此外,我们发现,对于 DCNN 和人类来说,物体的形状而不是视网膜大小、上下文、任务需求或纹理特征对于推断物体的大小至关重要。简而言之,通过将 DCNN 作为类似大脑的模型,我们的研究设计了一种补充传统方法的范例来探索对象空间的结构,为关于人类对物体的感知和神经表示的经验观察提供了计算支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验