Brown Joseph S, Mohamed Zeinab J, Artim Christine M, Thornlow Dana N, Hassler Joseph F, Rigoglioso Vincent P, Daniel Susan, Alabi Christopher A
Robert Frederick Smith School of Chemical and Biomolecular Engineering, 120 Olin Hall, Cornell University, Ithaca, NY 14853 USA.
Commun Biol. 2018 Dec 7;1:220. doi: 10.1038/s42003-018-0230-4. eCollection 2018.
Cationic charge and hydrophobicity have long been understood to drive the potency and selectivity of antimicrobial peptides (AMPs). However, these properties alone struggle to guide broad success in vivo, where AMPs must differentiate bacterial and mammalian cells, while avoiding complex barriers. New parameters describing the biophysical processes of membrane disruption could provide new opportunities for antimicrobial optimization. In this work, we utilize oligothioetheramides (oligoTEAs) to explore the membrane-targeting mechanism of oligomers, which have the same cationic charge and hydrophobicity, yet show a unique ~ 10-fold difference in antibacterial potency. Solution-phase characterization reveals little difference in structure and dynamics. However, fluorescence microscopy of oligomer-treated mimetic membranes shows multimeric lipid aggregation that correlates with biological activity and helps establish a framework for the kinetic mechanism of action. Surface plasmon resonance supports the kinetic framework and supports lipid aggregation as a driver of antimicrobial function.
长期以来,人们一直认为阳离子电荷和疏水性决定了抗菌肽(AMPs)的效力和选择性。然而,仅这些特性难以在体内取得广泛成功,因为在体内,抗菌肽必须区分细菌细胞和哺乳动物细胞,同时避开复杂的屏障。描述膜破坏生物物理过程的新参数可能为抗菌优化提供新机会。在这项工作中,我们利用寡硫醚酰胺(oligoTEAs)来探索具有相同阳离子电荷和疏水性但抗菌效力却有独特约10倍差异的寡聚物的膜靶向机制。溶液相表征显示结构和动力学差异不大。然而,经寡聚物处理的模拟膜的荧光显微镜检查显示多聚体脂质聚集,这与生物活性相关,并有助于建立作用动力学机制的框架。表面等离子体共振支持该动力学框架,并支持脂质聚集作为抗菌功能的驱动因素。