NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing.
University of Chinese Academy of Sciences, Beijing.
Bioinformatics. 2019 Aug 1;35(15):2593-2601. doi: 10.1093/bioinformatics/bty1009.
Visualizing and reconstructing cell developmental trajectories intrinsically embedded in high-dimensional expression profiles of single-cell RNA sequencing (scRNA-seq) snapshot data are computationally intriguing, but challenging.
We propose DensityPath, an algorithm allowing (i) visualization of the intrinsic structure of scRNA-seq data on an embedded 2-d space and (ii) reconstruction of an optimal cell state-transition path on the density landscape. DensityPath powerfully handles high dimensionality and heterogeneity of scRNA-seq data by (i) revealing the intrinsic structures of data, while adopting a non-linear dimension reduction algorithm, termed elastic embedding, which can preserve both local and global structures of the data; and (ii) extracting the topological features of high-density, level-set clusters from a single-cell multimodal density landscape of transcriptional heterogeneity, as the representative cell states. DensityPath reconstructs the optimal cell state-transition path by finding the geodesic minimum spanning tree of representative cell states on the density landscape, establishing a least action path with the minimum-transition-energy of cell fate decisions. We demonstrate that DensityPath can ably reconstruct complex trajectories of cell development, e.g. those with multiple bifurcating and trifurcating branches, while maintaining computational efficiency. Moreover, DensityPath has high accuracy for pseudotime calculation and branch assignment on real scRNA-seq, as well as simulated datasets. DensityPath is robust to parameter choices, as well as permutations of data.
DensityPath software is available at https://github.com/ucasdp/DensityPath.
Supplementary data are available at Bioinformatics online.
在单细胞 RNA 测序 (scRNA-seq) 快照数据的高维表达谱中,内在地可视化和重建细胞发育轨迹在计算上具有吸引力,但具有挑战性。
我们提出了 DensityPath,一种算法,允许 (i) 在嵌入式 2D 空间上可视化 scRNA-seq 数据的内在结构,以及 (ii) 在密度景观上重建最佳细胞状态转换路径。DensityPath 通过 (i) 揭示数据的内在结构,同时采用称为弹性嵌入的非线性降维算法,该算法可以保留数据的局部和全局结构,从而处理 scRNA-seq 数据的高维性和异质性;以及 (ii) 从转录异质性的单细胞多模态密度景观中提取高密度、水平集聚类的拓扑特征,作为代表性细胞状态。DensityPath 通过在密度景观上找到代表性细胞状态的测地线最小生成树来重建最佳细胞状态转换路径,从而建立具有细胞命运决策最小转换能的最小作用路径。我们证明了 DensityPath 能够有效地重建细胞发育的复杂轨迹,例如具有多个分叉和三分叉分支的轨迹,同时保持计算效率。此外,DensityPath 在真实的 scRNA-seq 和模拟数据集上具有高精度的伪时间计算和分支分配。DensityPath 对参数选择以及数据的置换具有鲁棒性。
DensityPath 软件可在 https://github.com/ucasdp/DensityPath 上获得。
补充数据可在生物信息学在线获得。