Suppr超能文献

scEpath:基于能量景观的单细胞转录组数据中转录本概率和细胞轨迹推断。

scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data.

机构信息

Department of Mathematics and Center for Complex Biological Systems.

Department of Development and Cell Biology, University of California, Irvine, CA, USA.

出版信息

Bioinformatics. 2018 Jun 15;34(12):2077-2086. doi: 10.1093/bioinformatics/bty058.

Abstract

MOTIVATION

Single-cell RNA-sequencing (scRNA-seq) offers unprecedented resolution for studying cellular decision-making processes. Robust inference of cell state transition paths and probabilities is an important yet challenging step in the analysis of these data.

RESULTS

Here we present scEpath, an algorithm that calculates energy landscapes and probabilistic directed graphs in order to reconstruct developmental trajectories. We quantify the energy landscape using 'single-cell energy' and distance-based measures, and find that the combination of these enables robust inference of the transition probabilities and lineage relationships between cell states. We also identify marker genes and gene expression patterns associated with cell state transitions. Our approach produces pseudotemporal orderings that are-in combination-more robust and accurate than current methods, and offers higher resolution dynamics of the cell state transitions, leading to new insight into key transition events during differentiation and development. Moreover, scEpath is robust to variation in the size of the input gene set, and is broadly unsupervised, requiring few parameters to be set by the user. Applications of scEpath led to the identification of a cell-cell communication network implicated in early human embryo development, and novel transcription factors important for myoblast differentiation. scEpath allows us to identify common and specific temporal dynamics and transcriptional factor programs along branched lineages, as well as the transition probabilities that control cell fates.

AVAILABILITY AND IMPLEMENTATION

A MATLAB package of scEpath is available at https://github.com/sqjin/scEpath.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

单细胞 RNA 测序 (scRNA-seq) 为研究细胞决策过程提供了前所未有的分辨率。在分析这些数据时,稳健推断细胞状态转变路径和概率是一个重要但具有挑战性的步骤。

结果

这里我们提出了 scEpath,这是一种计算能量景观和概率有向图以重建发育轨迹的算法。我们使用“单细胞能量”和基于距离的度量来量化能量景观,并发现这些组合能够稳健地推断出细胞状态之间的转变概率和谱系关系。我们还确定了与细胞状态转变相关的标记基因和基因表达模式。我们的方法产生的拟时排序比当前方法更稳健和准确,并且提供了细胞状态转变的更高分辨率动态,从而深入了解分化和发育过程中的关键转变事件。此外,scEpath 对输入基因集大小的变化具有鲁棒性,并且广泛无监督,用户只需设置几个参数。scEpath 的应用导致鉴定出与早期人类胚胎发育有关的细胞间通信网络,以及对成肌细胞分化很重要的新型转录因子。scEpath 使我们能够识别分支谱系上的共同和特定的时间动态和转录因子程序,以及控制细胞命运的转变概率。

可用性和实现

scEpath 的 MATLAB 包可在 https://github.com/sqjin/scEpath 上获得。

补充信息

补充数据可在 Bioinformatics 在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b17/6658715/e17e1b90957d/bty058f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验