Mittal Sneha, Jena Milan Kumar, Pathak Biswarup
Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India.
ACS Cent Sci. 2024 Aug 6;10(9):1689-1702. doi: 10.1021/acscentsci.4c00630. eCollection 2024 Sep 25.
Detection of stereoisomers of carbohydrates with molecular resolution, a challenging goal analysts desire to achieve, is key to the full development of glycosciences. Despite the promise that analytical techniques made, including widely used nuclear magnetic resonance and mass spectrometry, high throughput carbohydrate sequencing remains an unsolved issue. Notably, while next-generation sequencing technologies are readily available for DNA and proteins, they are conspicuously absent for carbohydrates due to the immense stereochemical and structural complexity inherent in these molecules. In this work, we report a novel computational technique that employs quantum tunneling coupled with artificial intelligence to detect complex carbohydrate anomers and stereoisomers with excellent sensitivity. The quantum tunneling footprints of carbohydrate isomers show high distinguishability with an in-depth analysis of underlying chemistry. Our findings open up a new route for carbohydrate sensing, which can be seamlessly integrated with next-generation sequencing technology for real-time analysis.
以分子分辨率检测碳水化合物的立体异构体是分析人员渴望实现的具有挑战性的目标,也是糖科学全面发展的关键。尽管包括广泛使用的核磁共振和质谱在内的分析技术带来了希望,但高通量碳水化合物测序仍然是一个未解决的问题。值得注意的是,虽然下一代测序技术可 readily available for DNA 和蛋白质,但由于这些分子固有的巨大立体化学和结构复杂性,它们在碳水化合物方面明显缺失。在这项工作中,我们报告了一种新颖的计算技术,该技术利用量子隧穿与人工智能相结合,以优异的灵敏度检测复杂的碳水化合物端基异构体和立体异构体。通过对基础化学的深入分析,碳水化合物异构体的量子隧穿足迹显示出高可区分性。我们的发现为碳水化合物传感开辟了一条新途径,该途径可与下一代测序技术无缝集成以进行实时分析。