Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA.
Department of Biology, University of Washington, Seattle, WA, 98195, USA.
Plant Reprod. 2019 Mar;32(1):45-54. doi: 10.1007/s00497-018-00351-8. Epub 2018 Dec 12.
In flowering plants, successful reproduction and generation of seed depends on the delivery of immotile sperm to female gametes via the pollen tube. As reproduction in flowering plants is the cornerstone of our agricultural industry, there is a need to uncover the genes, small molecules, and environmental conditions that affect pollen tube growth dynamics. However, methods for measuring pollen tube phenotypes are labor intensive, and suffer from a tradeoff between workload and resolution. To approach these problems, we use an image analysis technique called Automated Stack Iterative Subtraction (ASIST). Our tool converts growing pollen tube tips into closed particles, making the automated simultaneous extraction of multiple pollen tube phenotypes from hundreds of individual cells tractable via existing particle identification technology. Here we use our tool to analyze growth dynamics of pollen tubes in vitro, and semi in vivo. We show that ASIST provides a framework for robust, high throughput analysis of pollen tube growth behaviors in populations of cells, thus facilitating pollen tube phenomics.
在开花植物中,成功的繁殖和种子的产生依赖于通过花粉管将不动精子输送到雌性配子体。由于开花植物的繁殖是我们农业产业的基石,因此需要揭示影响花粉管生长动态的基因、小分子和环境条件。然而,测量花粉管表型的方法劳动强度大,并且在工作量和分辨率之间存在权衡。为了解决这些问题,我们使用一种称为自动堆叠迭代减法(ASIST)的图像分析技术。我们的工具将生长中的花粉管尖端转换为封闭的粒子,从而使通过现有的粒子识别技术从数百个单个细胞中自动提取多个花粉管表型成为可能。在这里,我们使用我们的工具来分析体外和半体内花粉管的生长动态。我们表明,ASIST 为细胞群体中花粉管生长行为的稳健、高通量分析提供了一个框架,从而促进了花粉管表型学的发展。