Suppr超能文献

可接受的药物不依从:一项针对法国医生的常见处方药物的众包研究。

Acceptable medication non-adherence: A crowdsourcing study among French physicians for commonly prescribed medications.

机构信息

Department of General Medicine, Paris Descartes University, Paris, France.

METHODS Team, Centre of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), INSERM, UMR 1153, Paris, France.

出版信息

PLoS One. 2018 Dec 13;13(12):e0209023. doi: 10.1371/journal.pone.0209023. eCollection 2018.

Abstract

BACKGROUND

Achieving good medication adherence is a major challenge for patients with chronic conditions. Our study aimed to assess the Threshold for Unacceptable Risk of Non-adherence (TURN), defined as the threshold at which physicians consider the health risks incurred by patients due to medication non-adherence unacceptable, for the most commonly prescribed drugs in France.

METHODS

We conducted an online study using a crowdsourcing approach among French general practitioners and specialists from September 2016 to August 2017. Physicians assessed the TURN for various levels of missed doses by evaluating a series of randomly presented clinical vignettes, each presenting a given medication with a given therapeutic indication. For each "drug-indication group" (i.e., all drugs from the same pharmacological class with a similar therapeutic indication): 1) we described the distribution of physicians' assessments, 2) we provided a summary estimate of the TURN, defined as the frequency of missed doses above which 75% of the physicians' assessments were located; 3) we computed the number of pill boxes reimbursed in France in 2016 to put our results into context.

RESULTS

We collected a total of 5365 assessments from 544 physicians, each of whom evaluated a random sample among 528 distinct clinical vignettes. Estimates of the TURN varied widely across drug-indication groups, ranging from risk considered unacceptable with 1 daily dose missed per month (e.g., insulin for diabetes) to risk always considered acceptable (e.g., anti-dementia drugs). Drugs with an estimated TURN of over one missing daily dose per week represented 44.9% of the prescription volume of the medications assessed in our study.

CONCLUSIONS

According to physicians, the impact of non-adherence may vary greatly. Patient-physician discussions on the variable consequences of non-adherence could lead to a paradigm shift by seeking to reach "optimal adherence" depending on drugs rather than unrealistic "perfect adherence" to all drugs.

摘要

背景

对于慢性病患者来说,实现良好的用药依从性是一项重大挑战。我们的研究旨在评估不可接受的药物不依从风险阈值(TURN),即医生认为因药物不依从而导致患者健康风险不可接受的阈值,这是法国最常用的药物。

方法

我们于 2016 年 9 月至 2017 年 8 月采用众包方式,对法国全科医生和专科医生进行了一项在线研究。医生通过评估一系列随机呈现的临床病例来评估各种漏服剂量水平的 TURN,每个病例呈现一种特定的药物和特定的治疗指征。对于每个“药物-适应证组”(即,具有相似治疗指征的同一药理学类别的所有药物):1)我们描述了医生评估的分布;2)我们提供了 TURN 的汇总估计值,定义为 75%的医生评估值所在的漏服剂量频率;3)我们计算了 2016 年在法国报销的药盒数量,以便将我们的结果置于上下文中。

结果

我们从 544 名医生中收集了总共 5365 项评估,每位医生评估了 528 个不同临床病例中的随机样本。药物-适应证组之间的 TURN 估计值差异很大,从每月漏服 1 次剂量就认为风险不可接受(例如,糖尿病用胰岛素)到始终认为风险可接受(例如,抗痴呆药物)不等。预计 TURN 超过每周漏服 1 次剂量的药物占我们研究中评估药物处方量的 44.9%。

结论

根据医生的说法,不依从的影响可能差异很大。患者与医生讨论不依从的可变后果可能会导致一种范式转变,即根据药物而不是所有药物的不切实际的“完美依从性”来寻求达到“最佳依从性”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1493/6292617/f2d0c7ef097c/pone.0209023.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验