García-Argote Williams, Medel Erika, Inostroza Diego, Vásquez-Espinal Alejandro, Solar-Encinas José, Leyva-Parra Luis, Ruiz Lina María, Yañez Osvaldo, Tiznado William
Centro de Investigación para el Diseño de Materiales (CEDEM), Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andrés Bello, Avenida República 275, Santiago 8370146, Chile.
Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana, Iztapalapa CP 09340 CDMX, Mexico.
Molecules. 2025 May 14;30(10):2163. doi: 10.3390/molecules30102163.
Silicon-lithium clusters are promising candidates for hydrogen storage due to their lightweight composition, high gravimetric capacities, and favorable non-covalent binding characteristics. In this study, we employ density functional theory (DFT), global optimization (AUTOMATON and Kick-MEP), and Born-Oppenheimer molecular dynamics (BOMD) simulations to evaluate the structural stability and hydrogen storage performance of key Li-Si systems. The exploration of their potential energy surface (PES) reveals that the true global minima of LiSi and LiSi differ markedly from those of the earlier Si-Li structures proposed as structural analogs of aromatic hydrocarbons such as benzene and naphthalene. Instead, these clusters adopt compact geometries composed of one or two Si () units and a Si dimer, all stabilized by surrounding Li atoms. Motivated by the recurrence of the Si- motif, we explore oligomers of LiSi, which can be viewed as electronically transmuted analogues of P, confirming the additive H uptake across dimer, trimer, and tetramer assemblies. Within the series of Si-Li clusters evaluated, the LiSi sandwich complex, featuring a σ-aromatic Si ring encapsulated by two Li moieties, achieves the highest hydrogen capacity, adsorbing 34 H molecules with a gravimetric density of 23.45 wt%. Its enhanced performance arises from the high density of accessible Li adsorption sites and the electronic stabilization afforded by delocalized σ-bonding. BOMD simulations at 300 and 400 K confirm their dynamic stability and reversible storage behavior, while analysis of the interaction regions confirms that hydrogen adsorption proceeds via weak, dispersion-driven physisorption. These findings clarify the structure-property relationships in Si-Li clusters and provide a basis for designing modular, lightweight, and thermally stable hydrogen storage materials.
硅锂簇因其轻质的组成、高的重量容量和良好的非共价结合特性,是很有前景的储氢候选材料。在本研究中,我们采用密度泛函理论(DFT)、全局优化(AUTOMATON和Kick-MEP)以及玻恩-奥本海默分子动力学(BOMD)模拟来评估关键锂硅体系的结构稳定性和储氢性能。对其势能面(PES)的探索表明,LiSi和LiSi的真正全局最小值与早期作为苯和萘等芳烃结构类似物提出的硅锂结构有显著差异。相反,这些簇采用由一个或两个Si()单元和一个硅二聚体组成的紧凑几何结构,所有这些都由周围的锂原子稳定。受Si-基序重复出现的启发,我们探索了LiSi的低聚物,其可被视为P的电子转化类似物,证实了在二聚体、三聚体和四聚体组装体上氢的加成吸收。在所评估的一系列硅锂簇中,具有由两个锂部分包裹的σ-芳香硅环的LiSi夹心配合物实现了最高的储氢容量,吸附34个氢分子,重量密度为23.45 wt%。其增强的性能源于可及锂吸附位点的高密度以及离域σ键提供的电子稳定作用。在300和400 K下的BOMD模拟证实了它们的动态稳定性和可逆存储行为,而对相互作用区域的分析证实氢吸附是通过弱的、色散驱动的物理吸附进行的。这些发现阐明了硅锂簇中的结构-性能关系,并为设计模块化、轻质和热稳定的储氢材料提供了基础。