Lee Agatha D, Leporé Natasha, Brun Caroline C, Barysheva Marina, Chou Yi-Yu, Chiang Ming-Chang, Madsen Sarah K, McMahon Katie L, de Zubicaray Greig I, Wright Margaret J, Toga Arthur W, Thompson Paul M
Laboratory of Neuro Imaging, Department of Neurology, UCLA, Los Angeles, CA 90095, USA.
Centre for Magnetic Resonance, University of Queensland, Brisbane, Queensland, 4072, Australia.
Proc IEEE Int Symp Biomed Imaging. 2009 Jun-Jul;2009:125-128. doi: 10.1109/ISBI.2009.5192999. Epub 2009 Aug 7.
We present a new algorithm to compute the voxel-wise genetic contribution to brain fiber microstructure using diffusion tensor imaging (DTI) in a dataset of 25 pairs of monozygotic (MZ) twins and 25 pairs of dizygotic (DZ) twins. First, the structural and DT scans were linearly co-registered. The structural MR scans were nonlinear mapped via a 3D fluid transformation to a geometrically centered mean template, and the deformation fields were applied to the DTI volumes. After tensor re-orientation to realign them to the anatomy, we computed several scalar and multivariate DT-derived measures including the geodesic anisotropy (GA), the tensor eigenvalues and the full diffusion tensors. A covariance-weighted distance was found between twins in the Log-Euclidean framework [2], and used as input to a maximum-likelihood based algorithm to compute the contributions from genetics (A), common environmental factors (C) and unique environmental ones (E) to fiber architecture. Quantitative genetic studies can make use of the full information in the diffusion tensor, using covariance weighted distances and statistics on the tensor manifold.
我们提出了一种新算法,用于在一个包含25对同卵(MZ)双胞胎和25对异卵(DZ)双胞胎的数据集中,使用扩散张量成像(DTI)计算体素水平上基因对脑纤维微观结构的贡献。首先,对结构扫描和DT扫描进行线性配准。通过三维流体变换将结构磁共振扫描非线性映射到几何中心平均模板,并将变形场应用于DTI体积。在对张量进行重新定向以使其与解剖结构对齐后,我们计算了几个标量和多变量DT衍生指标,包括测地线各向异性(GA)、张量特征值和全扩散张量。在对数欧几里得框架[2]中发现双胞胎之间的协方差加权距离,并将其用作基于最大似然算法的输入,以计算基因(A)、共同环境因素(C)和独特环境因素(E)对纤维结构的贡献。定量遗传学研究可以利用扩散张量中的全部信息,使用协方差加权距离和张量流形上的统计数据。