Lee Agatha D, Lepore Natasha, Lepore Franco, Alary Flamine, Voss Patrice, Chou Yiyu, Brun Caroline, Barysheva Marina, Toga Arthur W, Thompson Paul M
Laboratory of Neuro Imaging, Department of Neurology, University of Califonia, Los Angeles, Los Angeles, CA, USA.
Departement de Psychologie, Universite de Montreal, Montreal, QC, Canada.
Proc Front Converg Biosci Inf Technol (2007). 2007 Oct;2007:470-476. doi: 10.1109/FBIT.2007.52. Epub 2008 May 16.
Diffusion tensor magnetic resonance imaging (DTI) reveals the local orientation and integrity of white matter fiber structure based on imaging multidirectional water diffusion. Group differences in DTI images are often computed from single scalar measures, e.g., the Fractional Anisotropy (FA), discarding much of the information in the 6-parameter symmetric diffusion tensor. Here, we compute multivariate 6D tensor statistics to detect brain morphological changes in 12 blind subjects versus 14 sighted controls. After Log-Euclidean tensor denoising, images were fluidly registered to a common template. Fluidly-convected tensor signals were re-oriented by applying the local rotational and translational component of the deformation. Since symmetric, positive-definite matrices form a non-Euclidean manifold, we applied a Riemannian manifold version of the Hotelling's T test to the logarithms of the tensors, using a log-Euclidean metric. Statistics on the full 6D tensor-valued images outperformed univariate analysis of scalar images, such as the FA and the geodesic anisotropy (GA).
扩散张量磁共振成像(DTI)基于多方向水扩散成像揭示白质纤维结构的局部方向和完整性。DTI图像中的组间差异通常从单一标量测量值计算得出,例如分数各向异性(FA),从而丢弃了6参数对称扩散张量中的许多信息。在此,我们计算多变量6D张量统计量,以检测12名盲人受试者与14名视力正常的对照者之间的脑形态变化。在对数欧几里得张量去噪后,将图像灵活配准到一个通用模板。通过应用变形的局部旋转和平移分量,对灵活对流的张量信号进行重新定向。由于对称正定矩阵形成一个非欧几里得流形,我们使用对数欧几里得度量,将霍特林T检验的黎曼流形版本应用于张量的对数。全6D张量值图像的统计分析优于标量图像的单变量分析,如FA和测地线各向异性(GA)。