Suppr超能文献

基于随机子空间的集成建模在结直肠癌近红外光谱诊断中的应用。

Random subspace-based ensemble modeling for near-infrared spectral diagnosis of colorectal cancer.

机构信息

Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, Sichuan, 644000, China; Hospital, Yibin University, Yibin, Sichuan, 644000, China.

Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, Sichuan, 644000, China; The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.

出版信息

Anal Biochem. 2019 Feb 15;567:38-44. doi: 10.1016/j.ab.2018.12.009. Epub 2018 Dec 11.

Abstract

The feasibility of using near-infrared (NIR) spectroscopy coupled with classifier ensemble for improving the diagnosis of colorectal cancer was explored. A total of 157 NIR spectra from the patients were recorded and partitioned into the training set and the test set. Four algorithms, i.e., Adaboost.M1, Totalboost and LPboost using decision tree as weak learners, together with random subspace method (RSM) using linear discriminant classifier (LDA) as weak learners, were used to construct diagnostic models. Some key parameters such as the size of ensemble, i.e., the number of weak learners in ensemble, and the size of each subspace in RSM, were optimized. The results indicated that, in terms of generalization ability, the RSM-based classifier outperforms all other classifiers by only 40 members with 30 features each. On the basis of 200 different training sets, model population analysis (MPA) was made. The average sensitivity and specificity of the RSM classifier were 97.4% and 95.6%, respectively. It indicates that the NIR technique combined with the RSM algorithm can serve as a potential means for automatic identification of colorectal tissues.

摘要

探讨了近红外(NIR)光谱结合分类器集成用于改善结直肠癌诊断的可行性。从患者中记录了总共 157 个 NIR 光谱,并将其分为训练集和测试集。使用决策树作为弱学习者的 Adaboost.M1、Totalboost 和 LPboost 以及使用线性判别分类器(LDA)作为弱学习者的随机子空间方法(RSM)共 4 种算法用于构建诊断模型。优化了一些关键参数,例如集成的大小,即集成中的弱学习者数量,以及 RSM 中每个子空间的大小。结果表明,在泛化能力方面,基于 RSM 的分类器仅通过 40 个成员(每个成员 30 个特征)就优于所有其他分类器。在 200 个不同的训练集的基础上进行了模型群体分析(MPA)。RSM 分类器的平均灵敏度和特异性分别为 97.4%和 95.6%。这表明 NIR 技术与 RSM 算法的结合可以作为自动识别结直肠组织的潜在手段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验