Suppr超能文献

Drp1/Fis1 介导的线粒体片段化导致亨廷顿病心脏模型中的溶酶体功能障碍。

Drp1/Fis1-mediated mitochondrial fragmentation leads to lysosomal dysfunction in cardiac models of Huntington's disease.

机构信息

Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States.

Department of Cardiology and Pneumology, Gottingen University Medical Center, Gottingen, Germany; DZHK (German Center for Cardiovascular Research), partner site Gottingen, Germany.

出版信息

J Mol Cell Cardiol. 2019 Feb;127:125-133. doi: 10.1016/j.yjmcc.2018.12.004. Epub 2018 Dec 11.

Abstract

Huntington's disease (HD) is a fatal hereditary neurodegenerative disorder, best known for its clinical triad of progressive motor impairment, cognitive deficits and psychiatric disturbances, is caused by CAG-repeat expansion in exon 1 of Huntingtin (HTT). However, in addition to the neurological disease, mutant HTT (mHTT), which is ubiquitously expressed in all tissues, impairs other organ systems. Not surprisingly, cardiovascular dysautonomia as well as the deterioration of circadian rhythms are among the earliest detectable pathophysiological changes in individuals with HD. Mitochondrial dysfunction in the brain and skeletal muscle in HD has been well documented, as the disease progresses. However, not much is known about mitochondrial abnormalities in the heart. In this study, we describe a role for Drp1/Fis1-mediated excessive mitochondrial fission and dysfunction, associated with lysosomal dysfunction in H9C2 expressing long polyglutamine repeat (Q73) and in human iPSC-derived cardiomyocytes transfected with Q77. Expression of long polyglutamine repeat led to reduced ATP production and mitochondrial fragmentation. We observed an increased accumulation of damaged mitochondria in the lysosome that was coupled with lysosomal dysfunction. Importantly, reducing Drp1/Fis1-mediated mitochondrial damage significantly improved mitochondrial function and cell survival. Finally, reducing Fis1-mediated Drp1 recruitment to the mitochondria, using the selective inhibitor of this interaction, P110, improved mitochondrial structure in the cardiac tissue of R6/2 mice. We suggest that drugs focusing on the central nervous system will not address mitochondrial function across all organs, and therefore will not be a sufficient strategy to treat or slow down HD disease progression.

摘要

亨廷顿病(HD)是一种致命的遗传性神经退行性疾病,其特征为进行性运动障碍、认知缺陷和精神障碍三联征,由亨廷顿(HTT)外显子 1 中的 CAG 重复扩展引起。然而,除了神经疾病外,广泛表达于所有组织中的突变 HTT(mHTT)还会损害其他器官系统。毫不奇怪,心血管自主神经功能障碍以及昼夜节律的恶化是 HD 患者最早可检测到的病理生理变化之一。随着疾病的进展,HD 患者大脑和骨骼肌中的线粒体功能障碍已有充分的记载。然而,关于心脏中线粒体异常的了解并不多。在这项研究中,我们描述了 Drp1/Fis1 介导的过度线粒体裂变和功能障碍与溶酶体功能障碍在表达长聚谷氨酰胺重复(Q73)的 H9C2 和转染 Q77 的人 iPSC 衍生的心肌细胞中的作用。长聚谷氨酰胺重复的表达导致 ATP 产生减少和线粒体碎片化。我们观察到溶酶体中受损线粒体的积累增加,这与溶酶体功能障碍有关。重要的是,减少 Drp1/Fis1 介导的线粒体损伤显著改善了线粒体功能和细胞存活率。最后,使用该相互作用的选择性抑制剂 P110 减少 Fis1 介导的 Drp1 向线粒体的募集,可改善 R6/2 小鼠心脏组织中的线粒体结构。我们认为,专注于中枢神经系统的药物不会解决所有器官的线粒体功能,因此不会成为治疗或减缓 HD 疾病进展的充分策略。

相似文献

引用本文的文献

10
Role of Mitochondrial Dynamics in Heart Diseases.线粒体动力学在心脏疾病中的作用。
Genes (Basel). 2023 Sep 26;14(10):1876. doi: 10.3390/genes14101876.

本文引用的文献

7
Huntington's disease: a clinical review.亨廷顿病:临床综述。
Eur J Neurol. 2018 Jan;25(1):24-34. doi: 10.1111/ene.13413. Epub 2017 Sep 22.
9
Huntington's Disease and Mitochondria.亨廷顿病与线粒体。
Neurotox Res. 2017 Oct;32(3):518-529. doi: 10.1007/s12640-017-9766-1. Epub 2017 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验